当前位置: X-MOL 学术Eur. J. Mass Spectrom. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From the discovery of field ionization to field desorption and liquid injection field desorption/ionization-mass spectrometry—A journey from principles and applications to a glimpse into the future
European Journal of Mass Spectrometry ( IF 1.1 ) Pub Date : 2020-06-30 , DOI: 10.1177/1469066720939399
Jürgen H Gross 1
Affiliation  

The discovery of the ionizing effect of strong electric fields in the order of volts per Ångstrom in the early 1950s eventually led to the development of field ionization-mass spectrometry (FI-MS). Due to the very low ion currents, and thus, limited by the instrumentation of the 1960s, it took some time for the, by then, new technique to become adopted for analytical applications. In FI-MS, volatile or at least vaporizable samples mainly deliver molecular ions, and consequently, mass spectra showing no or at least minor numbers of fragment ion signals. The next major breakthrough was achieved by overcoming the need to evaporate the analyte prior to ionization. This was accomplished in the early 1970s by simply depositing the samples onto the field emitter and led to field desorption-mass spectrometry (FD-MS). With FD-MS, a desorption ionization method had become available that paved the road to the mass spectral analysis of larger molecules of low to high polarity and even of organic salts. In FD-MS, all of these analytes deliver spectra with no or at least few fragment ion peaks. The last milestone was the development of liquid injection field desorption/ionization (LIFDI) in the early 2000s that allows for sample deposition under the exclusion of atmospheric oxygen and water. In addition to sampling under inert conditions, LIFDI also enables more robust and quicker operation than classical FI-MS and FD-MS procedures. The development and applications of FI, FD, and LIFDI had mutual interference with the mass analyzers that were used in combination with these methods. Vice versa, the demand for using these techniques on other than magnetic sector instruments has effectuated their adaptation to different types of modern mass analyzers. The journey started with magnetic sector instruments, almost skipped quadrupole analyzers, encompassed Fourier transform ion cyclotron resonance (FT-ICR) and orthogonal acceleration time-of-flight (oaTOF) analyzers, and finally arrived at Orbitraps. Even interfaces for continuous-flow LIFDI have been realized. Even though being niche techniques to some degree, one may be confident that FI, FD, and LIFDI have a promising future ahead of them. This Account takes you on the journey from principles and applications of the title methods to a glimpse into the future.

中文翻译:

从场电离的发现到场解吸和液体注入场解吸/电离-质谱——从原理和应用到展望未来的旅程

1950 年代初期,每埃伏级强电场的电离效应的发现最终导致了场电离质谱 (FI-MS) 的发展。由于离子电流非常低,因此受到 1960 年代仪器的限制,到那时,新技术被用于分析应用需要一些时间。在 FI-MS 中,挥发性或至少可蒸发的样品主要传递分子离子,因此质谱图显示没有或至少有少量碎片离子信号。下一个重大突破是通过克服在电离之前蒸发分析物的需要而实现的。这是在 1970 年代初期通过简单地将样品沉积到场发射器上并导致场解吸质谱 (FD-MS) 来实现的。使用 FD-MS,一种解吸电离方法已经可用,为从低到高极性的大分子甚至有机盐的质谱分析铺平了道路。在 FD-MS 中,所有这些分析物都提供没有或至少有很少碎片离子峰的谱图。最后一个里程碑是 2000 年代初液体注入场解吸/电离 (LIFDI) 的发展,它允许在排除大气氧气和水的情况下进行样品沉积。除了在惰性条件下采样外,LIFDI 还可以实现比经典 FI-MS 和 FD-MS 程序更稳定、更快速的操作。FI、FD 和 LIFDI 的开发和应用与与这些方法结合使用的质量分析仪相互干扰。反之亦然,将这些技术用于非磁性扇形仪器的需求已经使它们适应不同类型的现代质量分析器。旅程从扇形磁场仪器开始,几乎跳过了四极杆分析仪,包括傅里叶变换离子回旋共振 (FT-ICR) 和正交加速飞行时间 (oaTOF) 分析仪,最后到达 Orbitraps。甚至连续流 LIFDI 的接口也已实现。尽管在某种程度上是利基技术,但人们可能相信 FI、FD 和 LIFDI 在他们面前有着光明的未来。这个帐户将带您从标题方法的原理和应用到对未来的一瞥。几乎跳过了四极杆分析仪,包括傅里叶变换离子回旋共振 (FT-ICR) 和正交加速飞行时间 (oaTOF) 分析仪,最后到达了 Orbitraps。甚至已经实现了连续流 LIFDI 的接口。尽管在某种程度上是利基技术,但人们可能相信 FI、FD 和 LIFDI 在他们面前有着光明的未来。这个帐户将带您从标题方法的原理和应用到对未来的一瞥。几乎跳过了四极杆分析仪,包括傅里叶变换离子回旋共振 (FT-ICR) 和正交加速飞行时间 (oaTOF) 分析仪,最后到达了 Orbitraps。甚至连续流 LIFDI 的接口也已实现。尽管在某种程度上是利基技术,但人们可能相信 FI、FD 和 LIFDI 在他们面前有着光明的未来。这个帐户将带您从标题方法的原理和应用到对未来的一瞥。和 LIFDI 有着光明的未来。这个帐户将带您从标题方法的原理和应用到对未来的一瞥。和 LIFDI 有着光明的未来。这个帐户将带您从标题方法的原理和应用到对未来的一瞥。
更新日期:2020-06-30
down
wechat
bug