当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shape Deformation of Nanoresonator: A Quasinormal-Mode Perturbation Theory.
Physical Review Letters ( IF 8.1 ) Pub Date : 2020-07-01 , DOI: 10.1103/physrevlett.125.013901
Wei Yan 1, 2 , Philippe Lalanne 3 , Min Qiu 1, 2
Affiliation  

When material parameters are fixed, optical responses of nanoresonators are dictated by their shapes and dimensions. Therefore, both designing nanoresonators and understanding their underlying physics would benefit from a theory that predicts the evolutions of resonance modes of open systems—the so-called quasinormal modes (QNMs)—as the nanoresonator shape changes. QNM perturbation theories (PTs) are one ideal choice. However, existing theories developed for tiny material changes are unable to provide accurate perturbation corrections for shape deformations. By introducing a novel extrapolation technique, we develop a rigorous QNM PT that faithfully represents the electromagnetic fields in perturbed domain. Numerical tests performed on the eigenfrequencies, eigenmodes, and optical responses of deformed nanoresonators evidence the predictive force of the present PT, even for large deformations. This opens new avenues for inverse design, as we exemplify by designing super-cavity modes and exceptional points with remarkable ease and physical insight.

中文翻译:

纳米谐振器的形状变形:准正态模式摄动理论。

当材料参数固定时,纳米谐振器的光学响应取决于其形状和尺寸。因此,设计纳米谐振器并了解其基本物理原理将受益于一种理论,该理论预测随着纳米谐振器形状的变化,开放系统的谐振模式(所谓的准正态模式(QNM))的演变。QNM扰动理论(PT)是一种理想的选择。但是,为微小的材料变化而开发的现有理论无法为形状变形提供准确的扰动校正。通过引入一种新颖的外推技术,我们开发了一种严格的QNM PT,可以忠实地表示扰动域中的电磁场。对本征频率,本征模,大变形。这为逆向设计开辟了新途径,正如我们通过设计超腔模和非凡点,并以极大的便利性和物理洞察力来举例说明。
更新日期:2020-07-01
down
wechat
bug