当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading
Nature ( IF 50.5 ) Pub Date : 2020-07-01 , DOI: 10.1038/s41586-020-2447-x
Anna B Loveland 1 , Gabriel Demo 1, 2 , Andrei A Korostelev 1
Affiliation  

Ribosomes accurately decode mRNA by proofreading each aminoacyl-tRNA that is delivered by the elongation factor EF-Tu 1 . To understand the molecular mechanism of this proofreading step it is necessary to visualize GTP-catalysed elongation, which has remained a challenge 2 – 4 . Here we use time-resolved cryogenic electron microscopy to reveal 33 ribosomal states after the delivery of aminoacyl-tRNA by EF-Tu•GTP. Instead of locking cognate tRNA upon initial recognition, the ribosomal decoding centre dynamically monitors codon–anticodon interactions before and after GTP hydrolysis. GTP hydrolysis enables the GTPase domain of EF-Tu to extend away, releasing EF-Tu from tRNA. The 30S subunit then locks cognate tRNA in the decoding centre and rotates, enabling the tRNA to bypass 50S protrusions during accommodation into the peptidyl transferase centre. By contrast, the decoding centre fails to lock near-cognate tRNA, enabling the dissociation of near-cognate tRNA both during initial selection (before GTP hydrolysis) and proofreading (after GTP hydrolysis). These findings reveal structural similarity between ribosomes in initial selection states 5 , 6 and in proofreading states, which together govern the efficient rejection of incorrect tRNA. Time-resolved cryogenic electron microscopy structures of a ribosome during the delivery of aminoacyl-tRNA by EF-Tu•GTP capture 33 ribosomal states, enabling visualization of the initial selection, proofreading and peptidyl transfer stages.

中文翻译:

EF-Tu•GTP 延长核糖体的冷冻电镜阐明 tRNA 校对

核糖体通过校对每个由延伸因子 EF-Tu 1 传递的氨酰-tRNA 来准确解码 mRNA。要了解此校对步骤的分子机制,有必要可视化 GTP 催化的延伸,这仍然是一个挑战 2 - 4。在这里,我们使用时间分辨低温电子显微镜来揭示 EF-Tu•GTP 递送氨酰基-tRNA 后的 33 种核糖体状态。核糖体解码中心不是在初始识别时锁定同源 tRNA,而是动态监测 GTP 水解前后的密码子-反密码子相互作用。GTP 水解使 EF-Tu 的 GTPase 结构域延伸,从 tRNA 中释放 EF-Tu。然后,30S 亚基将同源 tRNA 锁定在解码中心并旋转,使 tRNA 在适应肽基转移酶中心的过程中绕过 50S 突起。相比之下,解码中心无法锁定近同源 tRNA,从而在初始选择(GTP 水解之前)和校对(GTP 水解之后)期间都能解离近同源 tRNA。这些发现揭示了初始选择状态 5、6 和校对状态中核糖体之间的结构相似性,它们共同控制了对错误 tRNA 的有效排斥。在 EF-Tu•GTP 递送氨酰基-tRNA 期间,核糖体的时间分辨低温电子显微镜结构捕获 33 种核糖体状态,使初始选择、校对和肽基转移阶段的可视化成为可能。这些发现揭示了初始选择状态 5、6 和校对状态中核糖体之间的结构相似性,它们共同控制了对错误 tRNA 的有效排斥。在 EF-Tu•GTP 递送氨酰基-tRNA 期间,核糖体的时间分辨低温电子显微镜结构捕获 33 种核糖体状态,使初始选择、校对和肽基转移阶段的可视化成为可能。这些发现揭示了初始选择状态 5、6 和校对状态中核糖体之间的结构相似性,它们共同控制了对错误 tRNA 的有效排斥。在 EF-Tu•GTP 递送氨酰基-tRNA 期间,核糖体的时间分辨低温电子显微镜结构捕获 33 种核糖体状态,使初始选择、校对和肽基转移阶段的可视化成为可能。
更新日期:2020-07-01
down
wechat
bug