当前位置: X-MOL 学术ACS Appl. Nano Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D Morphology of Bimodal Porous Copper with Nano-Sized and Micron-Sized Pores to Enhance Transport Properties for Functional Applications
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2020-07-01 , DOI: 10.1021/acsanm.0c01163
Lijie Zou 1, 2 , Mingyuan Ge 3 , Jianming Bai 3 , Chonghang Zhao 2 , Hao Wang 1 , Xianghui Xiao 3 , Hui Zhong 4 , Sanjit Ghose 3 , Wah-Keat Lee 3 , Qiang Shen 1 , Fei Chen 1 , Yu-chen Karen Chen-Wiegart 2, 3
Affiliation  

Multiscale porous metals with multiscale porosity from nanometer to micrometer have a high specific surface area and high effective diffusivity for ion transport, thereby enhancing functionalities and extending the applications of porous metals. In this study, the Cu–Fe–Al ternary system was selected as the precursor alloy to construct multiscale, bimodal porous copper by the chemical dealloying method. The effect of the phase composition and initial microstructure of precursor alloys (AlxFe75–xCu25, x = 10–60) on the three-dimensional (3D) morphology of multiscale porous metals was systematically investigated, with a goal to precisely control the multiscale porous structure. The four crystal structure phases (body-centered cubic (BCC), face-centered cubic (FCC), CsCl type (B2), and monoclinic) in precursor alloys were analyzed by synchrotron X-ray diffraction refinement. The 3D morphology, feature size distribution, and tortuosity of four representative porous Cu after dealloying AlxFe75–xCu25 (x = 10, 30, 50, and 60) precursor alloys were directly visualized and quantified via advanced synchrotron X-ray nanotomography. The relationship between the phases/crystal structures of precursor alloys and their corresponding porous morphology was established: the micron-sized pores in bimodal porous Cu are formed by dissolving the CuFeAl phase with BCC and monoclinic crystal structures, and the nano-sized pores are formed by dealloying the CuFeAl phase with FCC and B2 crystal structures. The size of the nanoporous structure depends on the ratio between the more noble and more active components in the precursor alloy, while the size of the microporous structure depends on the corresponding phase size in the precursor alloy. The tortuosity results showed that the multiscale porous structure with both nanoporosity and microporosity exhibits lower tortuosity, which will enhance transport properties for functional applications.

中文翻译:

具有纳米和微米孔径的双峰多孔铜的3D形态,可增强功能性应用的传输性能

具有从纳米到微米的多尺度孔隙率的多尺度多孔金属具有高比表面积和用于离子传输的高有效扩散率,从而增强了功能性并扩展了多孔金属的应用。在这项研究中,选择了Cu–Fe–Al三元系作为前驱体合金,通过化学脱合金方法构造了多尺度,双峰多孔铜。前驱体合金的相组成和初始微观结构的影响(Al x Fe 75– x Cu 25x(10-60)对多尺度多孔金属的三维(3D)形态进行了系统研究,目的是精确控制多尺度多孔结构。通过同步加速器X射线衍射细化分析了前驱体合金中的四个晶体结构相(体心立方(BCC),面心立方(FCC),CsCl型(B2)和单斜晶)。Al x Fe 75– x Cu 25x)脱合金后,四个代表性多孔Cu的3D形态,特征尺寸分布和曲折度通过先进的同步加速器X射线纳米断层显像技术直接观察和量化10、30、50和60种前体合金。建立了前驱体合金的相/晶体结构与相应的多孔形态之间的关系:通过将BFC和单斜晶体结构溶于CuFeAl相,在双峰多孔Cu中形成了微米级孔,并形成了纳米级孔通过用FCC和B2晶体结构去除CuFeAl相。纳米孔结构的尺寸取决于前体合金中更高贵和活性更高的组分之间的比例,而微孔结构的尺寸取决于前体合金中相应的相尺寸。
更新日期:2020-08-28
down
wechat
bug