当前位置: X-MOL 学术ChemPhysChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing Hole Transport Materials with High Hole Mobility and Outstanding Interface Properties for Perovskite Solar Cells.
ChemPhysChem ( IF 2.3 ) Pub Date : 2020-07-17 , DOI: 10.1002/cphc.202000209
Rui Jiang 1 , Rui Zhu 1 , Ze-Sheng Li 1
Affiliation  

Organic–inorganic halide perovskite solar cells (PSCs) have attracted much attention due to their rapid increase in power conversion efficiencies (PCEs), and many efforts are devoted to further improving the PCEs. Designing highly efficient hole transport materials (HTMs) for PSCs may be one of the effective ways. Herein we theoretically designed three new HTMs (FDT−N, FDT−O, and FDT−S) by introducing a nitrogen‐phenyl group, an oxygen atom, and a sulfur atom into the spiro core of an experimentally synthesized HTM (FDT), respectively. And then we performed quantum chemical calculation to study their application potential. The results show that the devices with FDT−O and FDT−S instead of FDT may have higher open circuit voltages owing to their lower highest occupied molecular orbital (HOMO) energy levels. Moreover, FDT−S exhibits the best hole transport performance among the studied HTMs, which may be due to the significant HOMO‐HOMO overlap in the hole hopping path with the largest transfer integral. Furthermore, the results on interface properties indicate that introducing oxygen and sulfur atoms can enhance the MAPbI3/HTM interface interaction. The present work not only offers two promising HTMs (FDT−O and FDT−S) for PSCs but also provides theoretical help for subsequent research on HTMs.

中文翻译:

为钙钛矿太阳能电池设计具有高空穴迁移率和出色界面特性的空穴传输材料。

由于有机-无机卤化物钙钛矿太阳能电池(PSC)的功率转换效率(PCE)迅速提高,因此引起了广泛的关注,并且人们致力于进一步改善PCE。为PSC设计高效的空穴传输材料(HTM)可能是有效的方法之一。在理论上,我们通过将氮苯基,氧原子和硫原子引入实验合成的HTM(FDT)的螺芯中,设计了三个新的HTM(FDT-N,FDT-O和FDT-S),分别。然后我们进行了量子化学计算以研究其应用潜力。结果表明,具有FDT-O和FDT-S而不是FDT的设备可能会因其较高的最高占据分子轨道(HOMO)能级较低而具有较高的开路电压。此外,FDT-S在研究的HTM中表现出最佳的空穴传输性能,这可能是由于空穴跳跃路径中的HOMO-HOMO重叠量很大,且传递积分最大。此外,界面性质的结果表明引入氧和硫原子可以增强MAPbI。3 / HTM接口交互。目前的工作不仅为PSC提供了两个有前途的HTM(FDT-O和FDT-S),而且还为后续的HTM研究提供了理论上的帮助。
更新日期:2020-07-17
down
wechat
bug