当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reverse-engineering and modeling the 3D passive and active responses of skeletal muscle using a data-driven, non-parametric, spline-based procedure.
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.9 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.jmbbm.2020.103877
Sonsoles Moreno 1 , Víctor Jesús Amores 1 , José Ma Benítez 1 , Francisco J Montáns 1
Affiliation  

In this work we present a non-parametric data-driven approach to reverse-engineer and model the 3D passive and active responses of skeletal muscle, applied to tibialis anterior muscle of Wistar rats. We assume a Hill-type additive relation for the stored energy into passive and active contributions. The terms of the stored energy have no upfront assumed shape, nor material parameters. These terms are determined directly from experimental data in spline form solving numerically the functional equations of the tests from which experimental data is available. To characterize typical longitudinal-to-transverse behavior in rodent's muscle, experiments from Morrow et al. (J. Mech. Beh. Biomed. Mater. 2010; 3: 124–129) are employed. Then, the passive and active behaviors of Wistar rats are determined from the experiments of Calvo et al. (J. Bomech. 2010; 43:318–325) and Ramirez et al. (J. Theor. Biol. 2010; 267:546–553). The twitch shape is not assumed, but reverse-engineered from experimental data. The influence of the strain and the stimulus voltage and frequency in the active response, are also modeled. A convenient stimulus power-related variable is proposed to comprise both voltage and frequency dependencies in the active response. Then, the behavior of the resulting muscle model depends only on the muscle strain maintained during isometric tests in the muscle and the stimulus power variable, along the time from initiation of the tetanus state.



中文翻译:

使用数据驱动的,非参数,基于样条的程序对骨骼肌的3D被动和主动响应进行逆向工程和建模。

在这项工作中,我们提出了一种非参数数据驱动的方法来逆向工程和建模骨骼肌的3D被动和主动反应,并将其应用于Wistar大鼠的胫骨前肌。我们假设存储能量分为被动贡献和主动贡献的希尔型加性关系。储能的术语没有预先假定的形状,也没有材料参数。这些项是直接从样条形式的实验数据中确定的,通过数值方式解决了可以从中获得实验数据的测试功能方程。为了表征啮齿动物肌肉中典型的纵向到横向行为,Morrow等人的实验。(J. Mech。Beh。Biomed。Mater。2010; 3:124-129)被雇用。然后,根据Calvo等人的实验确定Wistar大鼠的被动和主动行为。(J.博美奇。2010; 43:318–325)和Ramirez等。(J. Theor。Biol。2010; 267:546-553)。不假定抽搐形状,而是根据实验数据进行了逆向工程。还对应变以及激励电压和频率在主动响应中的影响进行了建模。提出了一种方便的与激励功率有关的变量,该变量包括主动响应中的电压和频率相关性。然后,所得的肌肉模型的行为仅取决于等强度测试期间从破伤风状态开始的时间在肌肉中进行等轴测期间维持的肌肉劳损和刺激功率变量。也被建模。提出了一种方便的与激励功率有关的变量,该变量包括主动响应中的电压和频率相关性。然后,所得的肌肉模型的行为仅取决于在从破伤风状态开始的时间中等距测试期间在肌肉中保持的肌肉劳损和刺激功率变量。也被建模。提出了一种方便的与激励功率有关的变量,该变量包括主动响应中的电压和频率相关性。然后,所得的肌肉模型的行为仅取决于等强度测试期间从破伤风状态开始的时间在肌肉中进行等轴测期间维持的肌肉劳损和刺激功率变量。

更新日期:2020-07-01
down
wechat
bug