当前位置: X-MOL 学术J. Hazard. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Role of MnO2 in controlling iron and arsenic mobilization from illuminated flooded arsenic-enriched soils.
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.jhazmat.2020.123362
Guowen Dong 1 , Ruiwen Han 2 , Yajing Pan 2 , Chengkai Zhang 2 , Yu Liu 2 , Honghui Wang 3 , Xiaoliang Ji 2 , Randy A Dahlgren 4 , Xu Shang 2 , Zheng Chen 5 , Minghua Zhang 4
Affiliation  

This study examined the role of intermittent illumination/dark conditions coupled with MnO2-ammendments to regulate the mobility of As and Fe in flooded arsenic-enriched soils. Addition of MnO2 particles with intermittent illumination led to a pronounced increase in the reductive-dissolution of Fe(III) and As(V) from flooded soils compared to a corresponding dark treatments. A higher MnO2 dosage (0.10 vs 0.02 g) demonstrated a greater effect. Over a 49-day incubation, maximum Fe concentrations mobilized from the flooded soils amended with 0.10 and 0.02 g MnO2 particles were 2.39 and 1.85-fold higher than for non-amended soils under dark conditions. The corresponding maximum amounts of mobilized As were at least 92 % and 65 % higher than for non-amended soils under dark conditions, respectively. Scavenging of excited holes by soil humic/fulvic compounds increased mineral photoelectron production and boosted Fe(III)/As(V) reduction in MnO2-amended, illuminated soils. Additionally, MnO2 amendments shifted soil microbial community structure by enriching metal-reducing bacteria (e.g., Anaeromyxobacter, Bacillus and Geobacter) and increasing c-type cytochrome production. This microbial diversity response to MnO2 amendment facilitated direct contact extracellular electron transfer processes, which further enhanced Fe/As reduction. Subsequently, the mobility of released Fe(II) and As(III) was partially attenuated by adsorption, oxidation, complexation and/or coprecipitation on active sites generated on MnO2 surfaces during MnO2 dissolution. These results illustrated the impact of a semiconducting MnO2 mineral in regulating the biogeochemical cycles of As/Fe in soil and demonstrated the potential for MnO2-based bioremediation strategies for arsenic-polluted soils.



中文翻译:

MnO2在控制充满光照的富砷土壤中铁和砷迁移方面的作用。

这项研究探讨了间歇照明/黑暗条件与MnO 2-修饰物一起调节富砷土壤中As和Fe迁移率的作用。与相应的黑暗处理相比,添加间歇照明的MnO 2颗粒可显着提高水淹土壤中Fe(III)和As(V)的还原溶解度。较高的MnO 2剂量(0.10对0.02 g)显示出更大的效果。在49天的孵化过程中,从淹没土壤中调出的最大铁浓度用0.10和0.02 g MnO 2修正在黑暗条件下,土壤颗粒比未改良土壤高2.39倍和1.85倍。在黑暗条件下,相应的最大迁移量分别比未改良土壤高出至少92%和65%。土壤腐殖质/富里叶酸化合物清除激发空穴增加了矿物光电子的产生,并促进了MnO 2改良的光照土壤中Fe(III)/ As(V)的减少。此外,MnO的2修正由富集金属还原菌(例如,移位土壤微生物群落结构Anaeromyxobacter芽孢杆菌地杆菌)和增加Ç型细胞色素生产。微生物对MnO 2的响应该修正促进了直接接触细胞外电子转移过程,从而进一步增强了Fe / As的还原。随后,释放的Fe(II)和As(III)的迁移率通过在MnO 2溶解过程中在MnO 2表面产生的活性位上的吸附,氧化,络合和/或共沉淀而部分减弱。这些结果说明了半导体MnO 2矿物对调节土壤中As / Fe的生物地球化学循环的影响,并证明了基于MnO 2的砷污染土壤生物修复策略的潜力。

更新日期:2020-07-03
down
wechat
bug