当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanistic Investigation of Defect-Engineered, Non-Stoichiometric, and Morphology-Regulated Hierarchical Rhombus-/Spindle-/Peanut-Like ZnCo2O4 Microstructures and Their Applications Toward High-Performance Supercapacitors
Applied Surface Science ( IF 6.7 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.apsusc.2020.147123
G. Rajasekhara Reddy , G.R. Dillip , T.V.M. Sreekanth , Ramaraghavulu Rajavaram , B. Deva Prasad Raju , P.C. Nagajyothi , J. Shim

Abstract Self-assembled hierarchical rhombus-, spindle-, and peanut-like zinc cobaltite (ZnCo2O4, ZCO) microstructures have strategically engineered using an effective solvothermal approach. The various morphology-regulated ZCO samples have obtained by altering the concentration of precursors in the solvent. Effective strategic methods led to various regulated morphologies, as well as different physicochemical properties, such as the surface area/pore size/volume, crystalline nature, and non-stoichiometry of Zn and Co in the ZCO samples. The metal (Zn/Co)/O deficiencies have quantitatively estimated via X-ray photoelectron spectroscopy and confirmed by the Rietveld refinement of ZCO samples using X-ray diffraction data. A mechanistic study has performed to investigate the formation mechanism of the precursor concentration-dependent self-assembled ZCO microstructures. We demonstrate that the specific capacitance of ZCO has proportional to the Zn-deficiency/Co-excess. The Co-deficient-dependent electrochemical properties have studied for three samples and a decline in the following order: P-ZCO (1608.95 F g−1 at 0.35 A g−1) > S-ZCO (1007.48 F g−1 at 0.35 A g−1) > R-ZCO (629.05 F g−1 at 0.35 A g−1). The simple and inexpensive method of synthesized non-stoichiometric ternary metal oxides micro/nanostructures will introduce new directions in this emerging energy field.

中文翻译:

缺陷工程、非化学计量和形态调节分层菱形/主轴/花生状 ZnCo2O4 微结构的机理研究及其在高性能超级电容器中的应用

摘要 自组装分级菱形、纺锤形和花生状钴酸锌(ZnCo2O4,ZCO)微结构已使用有效的溶剂热方法进行了战略设计。通过改变溶剂中前体的浓度获得了各种形态调节的 ZCO 样品。有效的策略方法导致了各种受调控的形态,以及不同的物理化学性质,例如 ZCO 样品中 Zn 和 Co 的表面积/孔径/体积、结晶性质和非化学计量。金属 (Zn/Co)/O 缺陷已通过 X 射线光电子能谱定量估计,并通过使用 X 射线衍射数据对 ZCO 样品进行 Rietveld 细化证实。已经进行了一项机理研究,以研究前体浓度依赖性自组装 ZCO 微结构的形成机制。我们证明 ZCO 的比电容与 Zn 缺乏/Co 过量成正比。研究了三个样品的 Co-缺陷相关电化学性质,并按以下顺序下降:P-ZCO(0.35 A g-1 时为 1608.95 F g-1)> S-ZCO(0.35 A 时为 1007.48 F g-1) g-1) > R-ZCO(0.35 A g-1 时为 629.05 F g-1)。合成非化学计量的三元金属氧化物微/纳米结构的简单且廉价的方法将在这个新兴的能源领域引入新的方向。研究了三个样品的 Co-缺陷相关电化学性质,并按以下顺序下降:P-ZCO(0.35 A g-1 时为 1608.95 F g-1)> S-ZCO(0.35 A 时为 1007.48 F g-1) g-1) > R-ZCO(0.35 A g-1 时为 629.05 F g-1)。合成非化学计量的三元金属氧化物微/纳米结构的简单且廉价的方法将在这个新兴的能源领域引入新的方向。研究了三个样品的 Co-缺陷相关电化学性质,并按以下顺序下降:P-ZCO(0.35 A g-1 时为 1608.95 F g-1)> S-ZCO(0.35 A 时为 1007.48 F g-1) g-1) > R-ZCO(0.35 A g-1 时为 629.05 F g-1)。合成非化学计量三元金属氧化物微/纳米结构的简单且廉价的方法将在这个新兴的能源领域引入新的方向。
更新日期:2020-11-01
down
wechat
bug