当前位置: X-MOL 学术Metall. Mater. Trans. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermodynamic Stacking Fault Energy, Chemical Composition, and Microstructure Relationship in High-Manganese Steels
Metallurgical and Materials Transactions A ( IF 2.2 ) Pub Date : 2020-07-01 , DOI: 10.1007/s11661-020-05877-z
Giovani Gonçalves Ribamar , Tathiane Caminha Andrade , Hélio Cordeiro de Miranda , Hamilton Ferreira Gomes de Abreu

Stacking fault energy (SFE) is related to activating complex high strength and ductility mechanisms such as transformation-induced plasticity and twinning-induced plasticity effects. This type of energy can be estimated by many different methods and its importance is in its ability to predict microstructure and phase transformation behavior when the material is submitted to stress/strain. In order to study the SFE, chemical composition, and microstructure relationships, eleven different welding parameters were chosen to obtain a large range of dilution levels. A new tubular wire electrode of high-manganese steel (21 wt pct Mn) was used as the consumable and an SAE 1012 steel plate (0.6 wt pct Mn) as the base metal in a flux-cored arc welding process. These welding parameters were related to the phases formed and phase transformation behavior in the fusion zone. The SFE of the austenite phase was calculated using a thermodynamic model. The welding parameters produced SFE values in the range of − 5 to 7 mJ/m2. \(\epsilon \)-martensite and austenite were observed in all samples, but \(\alpha \)′-martensite was only found in those that presented negative SFE values, i.e., those with lower Mn content. Chemical Gibbs Free energy was the component with the most influence on the SFE. Nanoindentation detected the phase transformations during hardness testing for the medium and low dilution levels used, while the high dilution levels presented the highest hardness and modulus of elasticity values, and the lowest elastic and plastic deformation values. The results provide an improved method to develop high-manganese steels with microstructure control through welding parameters.



中文翻译:

高锰钢的热力学堆垛层错能,化学成分和微观结构关系

堆垛层错能(SFE)与激活复杂的高强度和延展性机制有关,例如转变诱导的塑性和孪生诱导的塑性效应。可以通过许多不同的方法来估计这种类型的能量,其重要性在于当材料承受应力/应变时其预测微观结构和相变行为的能力。为了研究SFE,化学成分和微观结构关系,选择了11种不同的焊接参数以获得较大范围的稀释水平。在药芯焊丝电弧焊工艺中,使用了一种新的高锰钢管状焊条(21 wt pct Mn)作为消耗品,并使用了SAE 1012钢板(0.6 wt pct Mn)作为母材。这些焊接参数与熔合区中形成的相和相变行为有关。使用热力学模型计算奥氏体相的SFE。焊接参数产生的SFE值在− 5至7 mJ / m的范围内2。在所有样品中都观察到\(\ epsilon \)-马氏体和奥氏体,但是\(\ alpha \) '-马氏体仅在那些呈现负SFE值的样品锰含量较低的样品)中发现。化学吉布斯自由能是对SFE影响最大的组分。纳米压痕检测到在硬度测试过程中所用的中低稀释水平的相变,而高稀释水平则显示出最高的硬度和弹性模量值,以及最低的弹性和塑性变形值。结果提供了一种改进的方法,可以通过焊接参数控制微观组织来开发高锰钢。

更新日期:2020-07-01
down
wechat
bug