当前位置: X-MOL 学术J. Mol. Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MEAM-based MD calculations of melting temperature for Fe.
Journal of Molecular Modeling ( IF 2.1 ) Pub Date : 2020-07-01 , DOI: 10.1007/s00894-020-04446-w
Hak-Son Jin 1 , Se-Won Kim 2 , Kyong-Chol Kim 3 , He Yang 4
Affiliation  

The molecular dynamics (MD) simulations were applied to the melting transition of the BCC metal Fe using the modified embedded atom method (MEAM) potential proposed by Jin et al. [Appl. Phys. A120 (2015) 189], and the newly derived formulas were adopted to calculate the forces acting on atoms in the MD simulations. We first determined the structural and energetic properties of the effectively infinite solid with no boundaries, and then investigated the Fe samples with low-index surfaces, namely Fe(100), Fe(110), and Fe(111). The simulations show that as the temperature increases, the (111) surface firstly disorders, followed by the (100) surface, while the (110) surface remains stable up to the melting temperature. The disorder phenomenon diffuses from the surface to the entire block, and as the density of atoms on the surface decreases, the effect of the premelting phenomenon also increases, being most pronounced on Fe(111) which has the lowest surface density. This conclusion is in line with the behavior found for BCC metal V in the previous simulation study.

中文翻译:

基于MEAM的Fe熔融温度的MD计算。

利用金等人提出的改进的嵌入原子方法(MEAM)势,将分子动力学(MD)模拟应用于BCC金属Fe的熔融转变。[应用 物理 A120(2015)189],并采用新推导的公式来计算MD模拟中作用在原子上的力。我们首先确定了无边界有效无限固体的结构和能量性质,然后研究了具有低折射率表面的Fe样品,即Fe(100),Fe(110)和Fe(111)。仿真表明,随着温度的升高,(111)表面首先发生紊乱,其次是(100)表面,而在熔融温度下(110)表面保持稳定。无序现象从表面扩散到整个块,并且随着表面上原子密度的降低,预熔化现象的影响也增加了,在表面密度最低的Fe(111)上最为明显。该结论与先前模拟研究中发现的BCC金属V的行为相符。
更新日期:2020-07-01
down
wechat
bug