当前位置: X-MOL 学术Flow Turbulence Combust. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A New Explicit Algebraic Wall Model for LES of Turbulent Flows Under Adverse Pressure Gradient
Flow, Turbulence and Combustion ( IF 2.4 ) Pub Date : 2020-07-01 , DOI: 10.1007/s10494-020-00181-7
Sylvia Wilhelm , Jerome Jacob , Pierre Sagaut

A new explicit algebraic wall law for the Large Eddy Simulation of flows with adverse pressure gradient is proposed. This new wall law, referred as adverse pressure gradient power law (APGPL), is developed starting from the power-law of Werner and Wengle (Turbulent Shear Flows, vol 8, Springer, New York, pp 155–168, 1993) in order to mimic an implicit non-equilibrium log-law based on Afzal’s law (Afzal, IUTAM Symposium on Asymptotic Methods for Turbulent Shear Flows at High Reynolds Numbers, Kluwer Academic Publishers, Bochum, pp 95–118, 1996). No iterative method is needed for the evaluation of the wall shear stress from the APGPL contrary to the majority of models available in the literature. The APGPL model relies on the definition of three modes: the equilibrium power-law is used in regions of no or favourable pressure gradient, the APGPL is used in regions of adverse pressure gradient, and no wall model is used in separated flow regions. This model is assessed via Large Eddy Simulations of flows involving adverse pressure gradient and boundary layer separation using the Lattice Boltzmann Method on uniform nested grids. The flow around a clean and iced NACA23012 airfoil at Reynolds number $$Re = 1.88 \times 10^6$$ R e = 1.88 × 10 6 and the flow over the LAGOON landing gear at $$Re = 1.59 \times 10^6$$ R e = 1.59 × 10 6 are considered. Results are found in good agreement with those obtained by the non-equilibrium log-law and experimental and numerical data available in the literature.

中文翻译:

逆压力梯度下湍流 LES 的一种新的显式代数壁模型

提出了一种新的显式代数壁定律,用于对具有不利压力梯度的流动进行大涡模拟。这种新的壁定律,称为逆压力梯度幂律 (APGPL),是从 Werner 和 Wengle 的幂律(湍流剪切流,第 8 卷,纽约斯普林格,第 155–168 页,1993 年)发展而来的模拟基于 Afzal 定律的隐式非平衡对数定律(Afzal,IUTAM 高雷诺数湍流剪切流渐近方法研讨会,Kluwer Academic Publishers,波鸿,第 95–118 页,1996 年)。与文献中可用的大多数模型相反,不需要迭代方法来评估来自 APGPL 的壁面剪应力。APGPL 模型依赖于三种模式的定义:平衡幂律用于没有或有利压力梯度的区域,APGPL 用于压力梯度不利的区域,而在分离的流动区域中不使用壁模型。该模型是通过在均匀嵌套网格上使用格子 Boltzmann 方法对涉及不利压​​力梯度和边界层分离的流动进行大涡模拟来评估的。在雷诺数 $$Re = 1.88 \times 10^6$$ Re = 1.88 × 10 6 下清洁和结冰的 NACA23012 翼型周围的流动以及在 $$Re = 1.59 \times 10^6 处通过 LAGOON 起落架的流动$$ R e = 1.59 × 10 6 被考虑。结果与文献中可用的非平衡对数定律以及实验和数值数据获得的结果非常一致。该模型是通过在均匀嵌套网格上使用格子 Boltzmann 方法对涉及不利压​​力梯度和边界层分离的流动进行大涡模拟来评估的。在雷诺数 $$Re = 1.88 \times 10^6$$ Re = 1.88 × 10 6 下清洁和结冰的 NACA23012 翼型周围的流动以及在 $$Re = 1.59 \times 10^6 处通过 LAGOON 起落架的流动$$ R e = 1.59 × 10 6 被考虑。结果与文献中可用的非平衡对数定律以及实验和数值数据获得的结果非常一致。该模型是通过在均匀嵌套网格上使用格子 Boltzmann 方法对涉及不利压​​力梯度和边界层分离的流动进行大涡模拟来评估的。在雷诺数 $$Re = 1.88 \times 10^6$$ Re = 1.88 × 10 6 下清洁和结冰的 NACA23012 翼型周围的流动以及在 $$Re = 1.59 \times 10^6 处通过 LAGOON 起落架的流动$$ R e = 1.59 × 10 6 被考虑。结果与文献中可用的非平衡对数定律以及实验和数值数据获得的结果非常一致。59 × 10 6 被考虑。结果与文献中可用的非平衡对数定律以及实验和数值数据获得的结果非常一致。59 × 10 6 被考虑。结果与文献中可用的非平衡对数定律以及实验和数值数据获得的结果非常一致。
更新日期:2020-07-01
down
wechat
bug