当前位置: X-MOL 学术IEEE Electron Device Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Variability and Fidelity Limits of Silicon Quantum Gates Due to Random Interface Charge Traps
IEEE Electron Device Letters ( IF 4.1 ) Pub Date : 2020-01-01 , DOI: 10.1109/led.2020.2997009
Tong Wu , Jing Guo

Silicon offers an attractive material platform for hardware realization of quantum computing. In this study, a microscopic stochastic simulation method is developed to model the effect of random interface charge traps in silicon metal-oxide-semiconductor (MOS) quantum gates. The statistical results show that by using a fast two-qubit gate in isotopically purified silicon, the two-qubit silicon-based quantum gates have the fidelity >98% with a probability of 75% for the state-of-the-art MOS interface quality. By using a composite gate pulse, the fidelity can be further improved to >99.5% with the 75% probability. The variations between the quantum gate devices, however, are largely due to the small number of traps per device. The results highlight the importance of variability consideration due to random charge traps and potential to improve fidelity in silicon-based quantum computing.

中文翻译:

由于随机界面电荷陷阱导致的硅量子门的可变性和保真度限制

硅为量子计算的硬件实现提供了一个有吸引力的材料平台。在这项研究中,开发了一种微观随机模拟方法来模拟硅金属氧化物半导体 (MOS) 量子门中随机界面电荷陷阱的影响。统计结果表明,通过在同位素纯化的硅中使用快速双量子位门,双量子位硅基量子门的保真度> 98%,最先进的MOS界面的概率为75%质量。通过使用复合门脉冲,保真度可以进一步提高到 >99.5%,概率为 75%。然而,量子门器件之间的差异主要是由于每个器件的陷阱数量较少。
更新日期:2020-01-01
down
wechat
bug