当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanics of Mineralized Collagen Fibrils upon Transient Loads.
ACS Nano ( IF 15.8 ) Pub Date : 2020-06-30 , DOI: 10.1021/acsnano.0c02180
Mario Milazzo 1, 2 , Gang Seob Jung 1 , Serena Danti 1, 2, 3 , Markus J Buehler 1, 4
Affiliation  

Collagen is a key structural protein in the human body, which undergoes mineralization during the formation of hard tissues. Earlier studies have described the mechanical behavior of bone at different scales, highlighting material features across hierarchical structures. Here we present a study that aims to understand the mechanical properties of mineralized collagen fibrils upon tensile/compressive transient loads, investigating how the kinetic energy propagates and it is dissipated at the molecular scale, thus filling a gap of knowledge in this area. These specific features are the mechanisms that nature has developed to passively dissipate stress and prevent structural failures. In addition to the mechanical properties of the mineralized fibrils, we observe distinct nanomechanical behaviors for the two regions (i.e., overlap and gap) of the D-period to highlight the effect of the mineralization. We notice decreasing trends for both wave speeds and Young’s moduli over input velocity with a marked strengthening effect in the gap region due to the accumulation of the hydroxyapatite. In contrast, the dissipative behavior is not affected by either loading conditions or the mineral percentage, showing a stronger damping effect upon faster inputs compatible to the bone behavior at the macroscale. Our results offer insights into the dissipative behavior of mineralized collagen composites to design and characterize bioinspired composites for replacement devices (e.g., prostheses for sound transmission or conduction) or optimized structures able to bear transient loads, for example, impact, fatigue, in structural applications.

中文翻译:

瞬态载荷下矿化胶原蛋白原纤维的力学。

胶原蛋白是人体中的关键结构蛋白,在硬组织形成过程中会发生矿化作用。较早的研究已经描述了骨骼在不同尺度下的力学行为,突出了跨层次结构的材料特征。在这里,我们提出了一项旨在了解矿化的胶原纤维在拉伸/压缩瞬态载荷下的机械性能的研究,研究了动能如何传播以及如何在分子尺度上消散,从而填补了这一领域的知识空白。这些特定的功能是自然界发展出的机制,可以消散应力并防止结构破坏。除了矿化原纤维的机械性能,我们观察到了两个区域不同纳米机械行为(ê,重叠和所述的间隙)d -period突出矿化的作用。我们注意到,由于羟基磷灰石的堆积,波速和杨氏模量在输入速度上均呈下降趋势,并且在间隙区域具有明显的增强作用。相反,耗散行为不受加载条件或矿物质百分比的影响,在与宏观尺度上的骨骼行为兼容的更快输入上显示出更强的阻尼效果。我们的结果为矿化胶原蛋白复合材料的耗散行为提供了见识,以设计和表征生物启发性复合材料以用于替代设备(例如, 用于声音传输或传导的假体)或在结构应用中能够承受瞬态载荷(例如冲击,疲劳)的优化结构。
更新日期:2020-07-28
down
wechat
bug