当前位置: X-MOL 学术Biointerphases › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical quartz crystal microbalance with dissipation investigation of fibronectin adsorption dynamics driven by electrical stimulation onto a conducting and partially biodegradable copolymer
Biointerphases ( IF 1.6 ) Pub Date : 2020-03-20 , DOI: 10.1116/1.5144983
Aruã C. da Silva 1 , Rubens A. da Silva 1 , Maria J. P. G. Souza 1 , Paula M. Montoya 2 , Ricardo Bentini 1 , Tatiana Augusto 1 , Roberto M. Torresi 1 , Luiz H. Catalani 1 , Susana I. Córdoba de Torresi 1
Affiliation  

Functional surface coatings are a key option for biomedical applications, from polymeric supports for tissue engineering to smart matrices for controlled drug delivery. Therefore, the synthesis of new materials for biological applications and developments is promising. Hence, biocompatible and stimuli-responsive polymers are interesting materials, especially when they present conductive properties. PEDOT-co-PDLLA graft copolymer exhibits physicochemical and mechanical characteristics required for biomedical purposes, associated with electroactive, biocompatible, and partially biodegradable properties. Herein, the study of fibronectin (FN) adsorption onto PEDOT-co-PDLLA carried out by an electrochemical quartz crystal microbalance with dissipation is reported. The amount of FN adsorbed onto PEDOT-co-PDLLA was higher than that adsorbed onto the Au surface, with a significant increase when electrical stimulation was applied (either at +0.5 or −0.125 V). Additionally, FN binds to the copolymer interface in an unfolded conformation, which can promote better NIH-3T3 fibroblast cell adhesion and later cell development.

中文翻译:

电化学石英晶体微天平,通过电刺激驱动可部分生物降解的共聚物对纤连蛋白的吸附动力学进行耗散研究

从用于组织工程的聚合物载体到用于控制药物输送的智能基质,功能性表面涂层是生物医学应用的关键选择。因此,用于生物应用和开发的新材料的合成是有希望的。因此,生物相容性和刺激响应性聚合物是有趣的材料,特别是当它们具有导电特性时。PEDOT -CO- PDLLA接枝共聚物表现出的物理化学和生物医学用途,具有电活性,生物相容的,并且部分地生物降解性质相关所需的机械特性。本文中,纤连蛋白(FN)吸附在PEDOT -co-上的研究据报道,PDLLA由具有耗散的电化学石英晶体微天平进行。吸附在PEDOT- co- PDLLA上的FN的量高于吸附在Au表面的FN的量,当施加电刺激时(+0.5或-0.125 V),FN的量显着增加。另外,FN以未折叠的构象结合到共聚物界面上,可以促进更好的NIH-3T3成纤维细胞粘附和随后的细胞发育。
更新日期:2020-03-20
down
wechat
bug