当前位置: X-MOL 学术APL Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent advances on visible-light-driven CO2 reduction: Strategies for boosting solar energy transformation
APL Materials ( IF 5.3 ) Pub Date : 2020-06-01 , DOI: 10.1063/5.0003215
Jin Yuan 1 , Yaping Du 1, 2 , Hongbo Zhang 1, 2
Affiliation  

The massive emission of greenhouse gas carbon dioxide (CO2) has attracted great attention due to its impact on global warming. Researchers have been working on this project for a long time and found that photocatalytic CO2 reduction has shown great potential in developing cost-effective clean energy resources. However, the efficiency of CO2 photo-reduction is low because of limited light absorption efficiency, undesired charge recombination, and high CO2 activation barrier in thermodynamics and kinetics. In this Perspective, we concentrate on recent advanced strategies to improve CO2 photo-reduction and illustrate the mechanism of CO2 activation and we intend to find the most plausible strategy on solving the problems listed. The mainstream approaches for boosting CO2 photo-reduction efficiency lie in (1) tuning the bandgap of the photocatalysts by incorporating heteroatoms in a photosensitizer causing enhanced light absorption; (2) constructing heterojunctions resulting in effective charge separation; and (3) introducing surface defects, basic sites, and functional groups, as well as increasing the surface area of catalysts contributing to enhanced CO2 adsorption and activation. Moreover, this Perspective will conclude with brief perspectives and recommendations regarding the promising research of converting CO2 into valuable fuels.

中文翻译:

可见光驱动二氧化碳减排的最新进展:促进太阳能转型的策略

温室气体二氧化碳(CO2)的大量排放因其对全球变暖的影响而备受关注。研究人员长期以来一直致力于该项目,并发现光催化二氧化碳还原在开发具有成本效益的清洁能源方面显示出巨大潜力。然而,由于光吸收效率有限、不希望的电荷复合以及热力学和动力学中的高 CO2 活化势垒,CO2 光还原的效率较低。在这个视角中,我们专注于最近改进 CO2 光还原的先进策略,并说明 CO2 活化的机制,我们打算找到解决所列问题的最合理策略。提高 CO2 光还原效率的主流方法在于 (1) 通过在光敏剂中加入杂原子来调节光催化剂的带隙,从而增强光吸收;(2) 构建异质结,实现有效的电荷分离;(3) 引入表面缺陷、碱性位点和官能团,并增加催化剂的表面积,有助于增强 CO2 吸附和活化。此外,本展望将以关于将二氧化碳转化为有价值燃料的有前途的研究的简要观点和建议作为结束。以及增加有助于增强 CO2 吸附和活化的催化剂的表面积。此外,本展望将以关于将二氧化碳转化为有价值燃料的有前途的研究的简要观点和建议作为结束。以及增加有助于增强 CO2 吸附和活化的催化剂的表面积。此外,本展望将以关于将二氧化碳转化为有价值燃料的有前途的研究的简要观点和建议作为结束。
更新日期:2020-06-01
down
wechat
bug