当前位置: X-MOL 学术J. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Using electronegativity and hardness to test density functionals.
The Journal of Chemical Physics ( IF 3.1 ) Pub Date : 2020-06-24 , DOI: 10.1063/5.0006189
Klaus A Moltved 1 , Kasper P Kepp 1
Affiliation  

Density functional theory (DFT) is used in thousands of papers each year, yet lack of universality reduces DFT’s predictive capacity, and functionals may produce energy-density imbalances. The absolute electronegativity (χ) and hardness (η) directly reflect the energy–density relationship via the chemical potential E/N and we thus hypothesized that they probe universality. We studied χ and η for atoms Z = 1–36 using 50 diverse functionals covering all major classes. Very few functionals describe both χ and η well. η benefits from error cancellation, whereas χ is marred by error propagation from IP and EA; thus, almost all standard GGA and hybrid functionals display a plateau in the MAE at ∼0.2 eV–0.3 eV for η. In contrast, variable performance for χ indicates problems in describing the chemical potential by DFT. The accuracy and precision of a functional is far from linearly related, yet for a universal functional, we expect linearity. Popular functionals such as B3LYP, PBE, and revPBE perform poorly for both properties. Density sensitivity calculations indicate large density-derived errors as occupation of degenerate p- and d-orbitals causes “non-universality” and large dependency on exact exchange. Thus, we argue that performance for χ for the same systems is a hallmark of an important aspect of universality by probing E/N. With this metric, B98, B97-1, PW6B95D3, MN-15, rev-TPSS, HSE06, and APFD are the most “universal” among the tested functionals. B98 and B97-1 are accurate for very diverse metal–ligand bonds, supporting that a balanced description of E/N and E2/N2, via χ and η, is probably a first simple probe of universality.

中文翻译:

使用电负性和硬度测试密度泛函。

每年,成千上万的论文使用密度泛函理论(DFT),但是缺乏通用性会降低DFT的预测能力,并且泛函可能会导致能量密度失衡。的绝对电负性(χ)和硬度(η)直接反映通过化学势的能量密度关系 E / N,因此我们假设他们探讨了普遍性。我们使用涵盖所有主要类别的50种多样的函数研究了Z = 1–36的原子的χ和η。很少有函数能够很好地描述χ和η。η受益于错误消除,而χ受IP和EA的错误传播所损害;因此,几乎所有的标准GGA和混合功能在MAE中的η均处于0.2 eV–0.3 eV的平稳状态。相反,对于χ的可变性能表明在用DFT描述化学势时存在问题。函数的准确性和精确度远非线性相关,但对于通用函数,我们期望线性。流行的功能(例如B3LYP,PBE和revPBE)对于这两个属性均表现不佳。密度敏感性计算表明,由于退化的p轨道和d轨道的占用会导致“非通用性”并严重依赖于精确交换,因此存在较大的密度衍生误差。因此,我们认为对于相同系统的χ的性能是普遍性重要方面的标志,这是通过探索 E / N.有了这个指标,B98,B97-1,PW6B95D3,MN-15,REV-TPSS,HSE06和APFD是测试函中最“普及”。B98和B97-1是准确非常多样的金属-配体键,支持该均衡描述 E / N和 ë 2 / Ñ 2,通过χ,η,大概是普遍性的第一简单探针。
更新日期:2020-06-30
down
wechat
bug