当前位置: X-MOL 学术Rev. Sci. Instrum. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pre-launch radiometric calibration of the infrared spectrometer onboard SuperCam for the Mars2020 rover
Review of Scientific Instruments ( IF 1.3 ) Pub Date : 2020-06-01 , DOI: 10.1063/1.5145390
Clément Royer 1 , F Poulet 1 , J-M Reess 2 , C Pilorget 1 , V Hamm 1 , T Fouchet 2 , S Maurice 3 , O Forni 3 , P Bernardi 2 , F Montmessin 4 , L Lapauw 4 , J Parisot 2 , M Bonafous 2 , O Gasnault 3 , R C Wiens 5
Affiliation  

Near-infrared spectroscopy has become a well-known remote sensing technique for the surface characterization of planetary objects. Among them, Mars was observed in the past by three imaging spectrometers from orbit. The Infrared Spectrometer/SuperCam instrument performs near-infrared spectroscopy from the martian surface for the first time, with a 1.15 mrad field of view, in the 1.3 µm-2.6 µm range, enabling the identification of a variety of mafic and altered minerals. Before integration aboard the rover, the spectrometer underwent a calibration campaign. Here, we report the radiometric and linearity responses of the instrument, including the optical and thermal setups used to perform them over its nominal range of operations, in terms of instrument detector temperatures and spectral range. These responses were constrained by accuracy requirements (20% in absolute radiometry, 1% in relative). The derived instrument transfer function fits within these requirements (<15% in absolute and <0.8% in relative) and shall be used to calculate the expected instrumental signal-to-noise ratio for typical observation scenarios of mineral mixtures expected to be found in the Jezero crater, and ultimately to retrieve the spectral properties of the regions of interest observed by the rover.

中文翻译:

火星2020火星车搭载SuperCam红外光谱仪的发射前辐射校准

近红外光谱已成为一种众所周知的用于行星物体表面表征的遥感技术。其中,火星过去曾被三台成像光谱仪从轨道上观测到。红外光谱仪/SuperCam 仪器首次对火星表面进行近红外光谱分析,其视场为 1.15 mrad,在 1.3 µm-2.6 µm 范围内,能够识别各种镁铁质和蚀变矿物。在集成到漫游车上之前,光谱仪进行了校准活动。在这里,我们报告了仪器的辐射测量和线性响应,包括用于在其标称操作范围内执行它们的光学和热设置,在仪器检测器温度和光谱范围方面。这些响应受到精度要求的限制(绝对辐射测量为 20%,相对辐射测量为 1%)。导出的仪器传递函数符合这些要求(绝对<15%,相对<0.8%),并应用于计算预期的矿物混合物典型观测场景的预期仪器信噪比。 Jezero 陨石坑,并最终检索漫游车观察到的感兴趣区域的光谱特性。
更新日期:2020-06-01
down
wechat
bug