当前位置: X-MOL 学术Rev. Sci. Instrum. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Collection of micromirror-modulated light in the single-pixel broadband hyperspectral microscope
Review of Scientific Instruments ( IF 1.3 ) Pub Date : 2020-06-01 , DOI: 10.1063/1.5132337
Lukáš Klein 1 , Karel Žídek 1
Affiliation  

A digital micromirror device (DMD) serves in a significant part of computational optical setups as a means of encoding an image by the desired pattern. The most prominent is its usage in the so-called single-pixel camera experiment. This experiment often requires an efficient and homogeneous collection of light from a relatively large chip on a small area of an optical fiber or spectrometer slit. Moreover, this effort is complicated by the fact that the DMD acts as a diffractive element, which causes severe spectral inhomogeneities in the light collection. We studied the effect of light diffraction via a whiskbroom hyperspectral camera in a broad spectral range. Based on this knowledge, we designed a variety of different approaches to the light collection. We mapped the efficiency and spectral homogeneity of each of the configuration, namely, its ability to couple the light into commercially available fiber spectrometers working in the visible and infrared range (up to 1900 nm). We found the integrating spheres to provide homogeneous light collection, which, however, suffers from very low efficiency. The best compromise between the performance parameters was provided by a combination of an engineered diffuser with an off-axis parabolic mirror. We used this configuration to create a computational microscope able to carry out hyperspectral imaging of a sample in a broad spectral range (400 nm-1900 nm). We see such a setup as an ideal tool to carry out spectrally resolved transmission microscopy in a broad spectral range.

中文翻译:

在单像素宽带高光谱显微镜中收集微镜调制光

数字微镜设备 (DMD) 在计算光学设置的重要部分中用作通过所需图案对图像进行编码的手段。最突出的是它在所谓的单像素相机实验中的使用。该实验通常需要从光纤或光谱仪狭缝的小区域上的相对较大的芯片中有效且均匀地收集光。此外,由于 DMD 充当衍射元件,这会导致光收集中严重的光谱不均匀性,这一事实使这项工作变得复杂。我们通过扫帚高光谱相机在宽光谱范围内研究了光衍射的影响。基于这些知识,我们设计了各种不同的光收集方法。我们绘制了每个配置的效率和光谱均匀性,即,它能够将光耦合到在可见光和红外范围内(高达 1900 nm)工作的市售光纤光谱仪。我们发现积分球可以提供均匀的光收集,但是效率非常低。性能参数之间的最佳折衷是由工程漫射器与离轴抛物面镜的组合提供的。我们使用这种配置创建了一个计算显微镜,能够在宽光谱范围 (400 nm-1900 nm) 内对样品进行高光谱成像。我们将这种设置视为在宽光谱范围内进行光谱分辨透射显微镜的理想工具。我们发现积分球可以提供均匀的光收集,但是效率非常低。性能参数之间的最佳折衷是由工程漫射器与离轴抛物面镜的组合提供的。我们使用这种配置创建了一个计算显微镜,能够在宽光谱范围 (400 nm-1900 nm) 内对样品进行高光谱成像。我们将这种设置视为在宽光谱范围内进行光谱分辨透射显微镜的理想工具。我们发现积分球可以提供均匀的光收集,但是效率非常低。性能参数之间的最佳折衷是由工程漫射器与离轴抛物面镜的组合提供的。我们使用这种配置创建了一个计算显微镜,能够在宽光谱范围 (400 nm-1900 nm) 内对样品进行高光谱成像。我们将这种设置视为在宽光谱范围内进行光谱分辨透射显微镜的理想工具。我们使用这种配置创建了一个计算显微镜,能够在宽光谱范围 (400 nm-1900 nm) 内对样品进行高光谱成像。我们将这种设置视为在宽光谱范围内进行光谱分辨透射显微镜的理想工具。我们使用这种配置创建了一个计算显微镜,能够在宽光谱范围 (400 nm-1900 nm) 内对样品进行高光谱成像。我们将这种设置视为在宽光谱范围内进行光谱分辨透射显微镜的理想工具。
更新日期:2020-06-01
down
wechat
bug