当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of a Core–Shell Heterojunction Ta3N5-Nanorods/BaTaO2N Photoanode for Solar Water Splitting
ACS Energy Letters ( IF 19.3 ) Pub Date : 2020-06-29 , DOI: 10.1021/acsenergylett.0c00900
Yuriy Pihosh 1 , Vikas Nandal 2 , Tsutomu Minegishi 1 , Masao Katayama 3 , Taro Yamada 3 , Kazuhiko Seki 2 , Masakazu Sugiyama 1 , Kazunari Domen 4
Affiliation  

Heterostructure-based photoanodes have been investigated to enhance light absorption and promote the generation and extraction of charge carriers for efficient solar-to-hydrogen energy conversion. Oxy(nitride) semiconducting materials are promising candidates to harvest the visible solar spectrum; however, the realization of stable and efficient oxy(nitride) heterostructure-based photoanodes remains a challenge. Here, we demonstrate a core–shell heterojunction photoanode of Ta3N5-nanorods/BaTaO2N that is obtained by combining glancing angle deposition and dip coating techniques. The heterojunction photoanode homogeneously covered by a FeNiOx cocatalyst (Ta3N5-NRs/BaTaO2N/FeNiOx) generates a stable photocurrent of ∼4.5 mA cm–2 at 1.23 VRHE under simulated AM 1.5G sunlight. The stoichiometric evolution of O2 and H2 from water occurs steadily over an hour when the covered heterojunction photoanode is connected to a Pt counter electrode with faradaic efficiencies of 90%–95%. This work may open a new path to fabricating efficient and stable oxy(nitride) photoactive materials for solar energy conversion.

中文翻译:

核-壳异质结Ta 3 N 5-纳米棒/ BaTaO 2 N光电阳极的开发

已经研究了基于异质结构的光阳极,以增强光吸收并促进电荷载流子的产生和提取,以实现高效的太阳能到氢能的转换。氧(氮化)半导体材料有望获得可见的太阳光谱。然而,稳定和高效的基于氧(氮化物)异质结构的光阳极的实现仍然是一个挑战。在这里,我们演示了Ta 3 N 5-纳米粒子/ BaTaO 2 N的核-壳异质结光电阳极,它是通过结合掠射角沉积和浸涂技术获得的。FeNiO x助催化剂(Ta 3 N 5 -NRs / BaTaO 2均匀覆盖的异质结光阳极在模拟AM 1.5G阳光下,在1.23 V RHE时,N / FeNiO x)产生约4.5 mA cm –2的稳定光电流。当覆盖的异质结光阳极连接到Pt对电极时,法拉第效率为90%–95%,一小时内,O 2和H 2从水中的化学计量逐渐稳定地发生。这项工作可能为制造高效稳定的用于太阳能转换的氧(氮化)光敏材料开辟一条新途径。
更新日期:2020-08-14
down
wechat
bug