当前位置: X-MOL 学术SIAM J. Sci. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Trefftz Finite Elements on Curvilinear Polygons
SIAM Journal on Scientific Computing ( IF 3.0 ) Pub Date : 2020-04-27 , DOI: 10.1137/19m1294046
Akash Anand , Jeffrey S. Ovall , Samuel E. Reynolds , Steffen Weißer

SIAM Journal on Scientific Computing, Volume 42, Issue 2, Page A1289-A1316, January 2020.
We present a Trefftz-type finite element method on meshes consisting of curvilinear polygons. Local basis functions are computed using integral equation techniques that allow for the efficient and accurate evaluation of quantities needed in the formation of local stiffness matrices. To define our local finite element spaces in the presence of curved edges, we must also properly define what it means for a function defined on a curved edge to be “polynomial” of a given degree on that edge. We consider two natural choices, before settling on the one that yields the inclusion of complete polynomial spaces in our local finite element spaces, and discuss how to work with these edge polynomial spaces in practice. An interpolation operator is introduced for the resulting finite elements, and we prove that it provides optimal order convergence for interpolation error under reasonable assumptions. We provide a description of the integral equation approach used for the examples in this paper, which was recently developed precisely with these applications in mind. A few numerical examples illustrate this optimal order convergence of the finite element solution on some families of meshes in which every element has at least one curved edge. We also demonstrate that it is possible to exploit the approximation power of locally singular functions that may exist in our finite element spaces in order to achieve optimal order convergence without the typical adaptive refinement toward singular points.


中文翻译:

曲线多边形上的Trefftz有限元

SIAM科学计算杂志,第42卷,第2期,第A1289-A1316页,2020年1月。
我们提出了由曲线多边形组成的网格上的Trefftz型有限元方法。使用积分方程技术计算局部基函数,从而可以高效,准确地评估形成局部刚度矩阵所需的数量。要在存在弯曲边缘的情况下定义局部有限元空间,我们还必须适当定义将在弯曲边缘上定义的函数定义为该边缘上给定度的“多项式”意味着什么。在确定一个在局部有限元空间中包含完整多项式空间的选择之前,我们考虑了两种自然选择,并讨论了如何在实践中使用这些边多项式空间。为结果有限元引入了插值运算符,并且证明了在合理的假设下,它可以为插值误差提供最优的阶收敛性。我们提供了用于本文示例的积分方程方法的说明,该方法是在考虑到这些应用的基础上最近开发的。几个数值示例说明了有限元解在某些网格族中的最佳阶收敛性,其中每个元素至少具有一个弯曲边缘。我们还证明,有可能利用有限元空间中可能存在的局部奇异函数的逼近力,以实现最佳阶收敛,而无需对奇异点进行典型的自适应细化。正是根据这些应用程序而开发的。几个数值示例说明了有限元解在某些网格族中的最佳阶收敛性,其中每个元素至少具有一个弯曲边缘。我们还证明,有可能利用有限元空间中可能存在的局部奇异函数的逼近力,以实现最佳阶收敛,而无需对奇异点进行典型的自适应细化。正是根据这些应用程序而开发的。几个数值示例说明了有限元解在某些网格族上的最优阶收敛性,其中每个元素至少具有一个弯曲边缘。我们还证明,有可能利用有限元空间中可能存在的局部奇异函数的逼近力,以实现最佳阶收敛,而无需对奇异点进行典型的自适应细化。
更新日期:2020-04-27
down
wechat
bug