当前位置: X-MOL 学术SIAM J. Imaging Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Convexification for a Three-Dimensional Inverse Scattering Problem with the Moving Point Source
SIAM Journal on Imaging Sciences ( IF 2.1 ) Pub Date : 2020-05-14 , DOI: 10.1137/19m1303101
Vo Anh Khoa , Michael Victor Klibanov , Loc Hoang Nguyen

SIAM Journal on Imaging Sciences, Volume 13, Issue 2, Page 871-904, January 2020.
For the first time, we develop in this paper the globally convergent convexification numerical method for a coefficient inverse problem for the three-dimensional Helmholtz equation for the case when the backscattering data are generated by a point source running along an interval of a straight line and the wavenumber is fixed. Thus, by varying the wavenumber, one can reconstruct the dielectric constant depending not only on spatial variables but on the wavenumber (i.e., frequency) as well. Our approach relies on a new derivation of a boundary value problem for a system of coupled quasi-linear elliptic partial differential equations. This is done via an application of a special truncated Fourier-like method. First, we prove the Lipschitz stability estimate for this problem via a Carleman estimate. Next, using the Carleman weight function generated by that estimate, we construct a globally strictly convex cost functional and prove the global convergence to the exact solution of the gradient projection method. Finally, our theoretical finding is verified via several numerical tests with computationally simulated data. These tests demonstrate that we can accurately recover all three important components of targets of interest: locations, shapes, and dielectric constants. In particular, large target/background contrasts in dielectric constants (up to 10:1) can be accurately calculated.


中文翻译:

具有移动点源的三维逆散射问题的凸化

SIAM影像科学杂志,第13卷,第2期,第871-904页,2020年1月。
本文是首次针对三维Helmholtz方程系数逆问题的全局收敛凸数值方法,开发了一种反向散射数据是由沿直线间隔和波数是固定的。因此,通过改变波数,不仅可以依赖于空间变量,还可以依赖于波数(即,频率)来重构介电常数。我们的方法依赖于耦合拟线性椭圆型偏微分方程组的边值问题的新推导。这是通过应用特殊的截断傅立叶式方法来完成的。首先,我们通过Carleman估计证明Lipschitz稳定性估计。下一个,使用由该估计生成的Carleman权函数,我们构造了一个全局严格的凸成本函数,并证明了对梯度投影法精确解的全局收敛性。最终,我们的理论发现通过数个数值模拟试验数据得到了验证。这些测试表明,我们可以准确地恢复目标物体的所有三个重要组成部分:位置,形状和介电常数。特别是,可以精确计算出大的目标/背景对比度(介电常数高达10:1)。我们的理论发现已通过数次数值测试与计算得出的模拟数据进行了验证。这些测试表明,我们可以准确地恢复目标物体的所有三个重要组成部分:位置,形状和介电常数。特别是,可以精确计算出大的目标/背景对比度(介电常数高达10:1)。我们的理论发现通过数次数值测试与计算得出的模拟数据得到了验证。这些测试表明,我们可以准确地恢复目标的所有三个重要组成部分:位置,形状和介电常数。特别是,可以精确计算出大的目标/背景对比度(介电常数高达10:1)。
更新日期:2020-06-30
down
wechat
bug