当前位置: X-MOL 学术SIAM J. Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of Propagation for Impulsive Reaction-Diffusion Models
SIAM Journal on Applied Mathematics ( IF 1.9 ) Pub Date : 2020-02-20 , DOI: 10.1137/19m1246481
Mostafa Fazly , Mark Lewis , Hao Wang

SIAM Journal on Applied Mathematics, Volume 80, Issue 1, Page 521-542, January 2020.
We study a hybrid impulsive reaction-advection-diffusion model given by a reaction-advection-diffusion equation composed with a discrete-time map in space dimension $n\in\mathbb N$. The reaction-advection-diffusion equation takes the form $u^{(m)}_t \!=\! {div}(A\nabla u^{(m)}-q u^{(m)}) + f(u^{(m)}) {for} (x,t)\in\mathbb R^n \times (0,1]$, for some function $f$, a drift $q$, and a diffusion matrix $A$. When the discrete-time map is local in space we use $N_m(x)$ to denote the density of population at a point $x$ at the beginning of reproductive season in the $m$th year, and when the map is nonlocal we use $u_m(x)$. The local discrete-time map is $\{u^{(m)}(x,0) = g(N_m(x)) {for} x\in \mathbb R^n , N_{m+1}(x):=u^{(m)}(x,1) {for} x\in \mathbb R^n \}$ for some function $g$. The nonlocal discrete time map is $\{u^{(m)}(x,0) = u_{m}(x) {for} x\in \mathbb R^n , u_{m+1}(x) := g(\int_{\mathbb R^n} K(x-y)u^{(m)}(y,1) dy) {for} x\in \mathbb R^n\}$, when $K$ is a nonnegative normalized kernel. Here, we analyze the above model from a variety of perspectives so as to understand the phenomenon of propagation. We provide explicit formulas for the spreading speed of propagation in any direction $e\in\mathbb R^n$. Due to the structure of the model, we apply a simultaneous analysis of the differential equation and the recurrence relation to establish the existence of traveling wave solutions. The remarkable point is that the roots of spreading speed formulas, as a function of drift, are exactly the values that yield blow-up for the critical domain dimensions, just as with the classical Fisher's equation with advection. We provide applications of our main results to impulsive reaction-advection-diffusion models describing periodically reproducing populations subject to climate change, insect populations in a stream environment with yearly reproduction, and grass growing logistically in the savannah with asymmetric seed dispersal and impacted by periodic fires.


中文翻译:

脉冲反应扩散模型的传播分析

SIAM应用数学杂志,第80卷,第1期,第521-542页,2020年1月。
我们研究了一个由反应-对流-扩散方程给出的混合脉冲反应-对流-扩散模型,该方程由一个离散时间图组成,在空间维数$ n \ in \ mathbb N $中。反应-对流-扩散方程的形式为$ u ^ {(m)} _ t \!= \!{div}(A \ nabla u ^ {(m)}-qu ^ {(m)})+ f(u ^ {(m)}){for}(x,t)\ in \ mathbb R ^ n \ (0,1] $,对于某些函数$ f $,漂移$ q $和扩散矩阵$ A $。当离散时间图在空间中是局部的时,我们使用$ N_m(x)$表示在第m个年的繁殖季节开始时$ x $点的人口密度,当地图为非本地地图时,我们使用$ u_m(x)$。本地离散时间地图为$ \ {u ^ {(m)}(x,0)= g(N_m(x)){for} x \ in \ mathbb R ^ n,N_ {m + 1}(x):= u ^ {(m)}(x ,1){for} x \ in \ mathbb R ^ n \} $对于某些函数$ g $。非本地离散时间映射为$ \ {u ^ {(m)}(x,0)= u_ {m}(x){for} x \ in \ mathbb R ^ n,u_ {m + 1}(x):= g(\ int _ {\ mathbb R ^ n} K(xy)u ^ {(m)}(y,1)dy){for} x \ in \ mathbb R ^ n \} $,当$ K $是非负归一化内核时。在这里,我们从多种角度分析上述模型,以了解传播现象。我们为在任何方向$ e \ in \ mathbb R ^ n $中的传播传播速度提供了明确的公式。由于模型的结构,我们对微分方程和递归关系进行了同时分析,以建立行波解的存在性。值得注意的是,作为漂移的函数,扩展速度公式的根源恰好是产生临界域尺寸爆炸的值,就像经典的平流费舍尔方程一样。
更新日期:2020-02-20
down
wechat
bug