当前位置: X-MOL 学术SIAM J. Appl. Dyn. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Time-Delay Observables for Koopman: Theory and Applications
SIAM Journal on Applied Dynamical Systems ( IF 1.7 ) Pub Date : 2020-04-22 , DOI: 10.1137/18m1216572
Mason Kamb , Eurika Kaiser , Steven L. Brunton , J. Nathan Kutz

SIAM Journal on Applied Dynamical Systems, Volume 19, Issue 2, Page 886-917, January 2020.
Nonlinear dynamical systems are ubiquitous in science and engineering, yet analysis and prediction of these systems remains a challenge. Koopman operator theory circumvents some of these issues by considering the dynamics in the space of observable functions on the state, in which the dynamics are intrinsically linear and thus amenable to standard techniques from numerical analysis and linear algebra. However, practical issues remain with this approach, as the space of observables is infinite dimensional and selecting a subspace of functions in which to accurately represent the system is a nontrivial task. In this work we consider time-delay observables to represent nonlinear dynamics in the Koopman operator framework. We prove the surprising result that Koopman operators for different systems admit universal (system-independent) representations in these coordinates, and give analytic expressions for these representations. In addition, we show that for certain systems a restricted class of these observables form an optimal finite-dimensional basis for representing the Koopman operator, and that the analytic representation of the Koopman operator in these coordinates coincides with results computed by the dynamic mode decomposition. We provide numerical examples to complement our results. In addition to being theoretically interesting, these results have implications for a number of linearization algorithms for dynamical systems.


中文翻译:

考夫曼的时滞可观测值:理论与应用

SIAM应用动力系统杂志,第19卷,第2期,第886-917页,2020年1月。
非线性动力学系统在科学和工程中无处不在,但是对这些系统的分析和预测仍然是一个挑战。Koopman算子理论通过考虑状态上可观察函数空间中的动力学来规避其中的某些问题,其中动力学本质上是线性的,因此适合于数值分析和线性代数的标准技术。但是,这种方法仍然存在实际问题,因为可观察对象的空间是无限维的,选择功能的子空间以准确表示系统并不是一件容易的事。在这项工作中,我们考虑了时滞可观性,以表示Koopman算子框架中的非线性动力学。我们证明了令人惊讶的结果,即针对不同系统的Koopman运算符在这些坐标中接受通用(与系统无关)表示,并给出了这些表示的解析表达式。此外,我们表明,对于某些系统,这些可观察值的受限类形成了表示Koopman算子的最佳有限维基础,并且这些坐标中Koopman算子的解析表示与动态模式分解计算的结果一致。我们提供了数字示例来补充我们的结果。除了理论上令人感兴趣之外,这些结果还对动态系统的许多线性化算法产生了影响。我们表明,对于某些系统,这些可观测值的受限类形成了表示Koopman算子的最佳有限维基础,并且在这些坐标中Koopman算子的解析表示与动态模式分解计算的结果一致。我们提供了数字示例来补充我们的结果。除了理论上令人感兴趣之外,这些结果还对动态系统的许多线性化算法产生了影响。我们表明,对于某些系统,这些可观测值的受限类形成了表示Koopman算子的最佳有限维基础,并且在这些坐标中Koopman算子的解析表示与动态模式分解计算的结果一致。我们提供了数字示例来补充我们的结果。除了理论上令人感兴趣之外,这些结果还对动态系统的许多线性化算法产生了影响。
更新日期:2020-06-30
down
wechat
bug