当前位置: X-MOL 学术Phytochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biosynthesis and tissue-specific partitioning of camphor and eugenol in Ocimum kilimandscharicum
Phytochemistry ( IF 3.2 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.phytochem.2020.112451
Priyanka Singh 1 , Raviraj M Kalunke 2 , Anurag Shukla 2 , Oren Tzfadia 3 , Hirekodathakallu V Thulasiram 4 , Ashok P Giri 2
Affiliation  

In Ocimum kilimandscharicum, the relative volatile composition of camphor in leaves was as high as 55%, while that of eugenol in roots was 57%. These metabolites were differentially partitioned between the aerial and root tissues. Global metabolomics revealed tissue-specific biochemical specialization, evident by the differential distribution of 2588 putative metabolites across nine tissues. Next-generation sequencing analysis indicated differential expression of 51 phenylpropanoid and 55 terpenoid pathway genes in aerial and root tissues. By integrating metabolomics with transcriptomics, the camphor biosynthesis pathway in O. kilimandscharicum was elucidated. In planta bioassays revealed the role of geranyl diphosphate synthase (gpps) and borneol dehydrogenase (bdh) in camphor biosynthesis. Further, the partitioning of camphor was attributed to tissue-specific gene expression of both the pathway entry point (gpps) and terminal (bdh) enzyme. Unlike camphor, eugenol accumulated more in roots; however, absence of the eugenol synthase gene in roots indicated long distance transport from aerial tissues. In silico co-expression analysis indicated the potential involvement of ATP-binding cassette, multidrug and toxic compound extrusion, and sugar transporters in eugenol transport. Similar partitioning was evident across five other Ocimum species. Overall, our work indicates that metabolite partitioning maybe a finely regulated process, which may have implications on plant growth, development, and defense.

中文翻译:

罗汉果中樟脑和丁香酚的生物合成和组织特异性分配

Ocimum kilimandscharicum叶片中樟脑的相对挥发成分高达55%,而根中丁香酚的相对挥发成分高达57%。这些代谢物在气生组织和根组织之间存在差异。全球代谢组学揭示了组织特异性生化专业化,这可以通过 2588 种推定代谢物在 9 种组织中的差异分布来证明。新一代测序分析表明 51 个苯丙烷和 55 个萜类通路基因在气生和根组织中的差异表达。通过将代谢组学与转录组学相结合,阐明了 O. kilimandscharicum 中的樟脑生物合成途径。植物生物测定揭示了香叶基二磷酸合酶 (gpps) 和冰片脱氢酶 (bdh) 在樟脑生物合成中的作用。更多,樟脑的分配归因于途径入口点 (gpps) 和末端 (bdh) 酶的组织特异性基因表达。与樟脑不同,丁香酚在根中积累更多;然而,根中丁香酚合酶基因的缺失表明从气生组织进行长距离运输。计算机共表达分析表明 ATP 结合盒、多药和有毒化合物挤出以及糖转运蛋白可能参与丁香酚转运。其他五种罗勒属植物中也有类似的划分。总的来说,我们的工作表明代谢物分配可能是一个精细调节的过程,这可能对植物的生长、发育和防御产生影响。然而,根中丁香酚合酶基因的缺失表明从气生组织进行长距离运输。计算机共表达分析表明 ATP 结合盒、多药和有毒化合物挤出以及糖转运蛋白可能参与丁香酚转运。其他五种罗勒属植物中也有类似的划分。总的来说,我们的工作表明代谢物分配可能是一个精细调节的过程,这可能对植物的生长、发育和防御产生影响。然而,根中丁香酚合酶基因的缺失表明从气生组织进行长距离运输。计算机共表达分析表明 ATP 结合盒、多药和有毒化合物挤出以及糖转运蛋白可能参与丁香酚转运。其他五种罗勒属植物中也有类似的划分。总的来说,我们的工作表明代谢物分配可能是一个精细调节的过程,这可能对植物的生长、发育和防御产生影响。其他五种罗勒属植物中也有类似的划分。总的来说,我们的工作表明代谢物分配可能是一个精细调节的过程,这可能对植物的生长、发育和防御产生影响。其他五种罗勒属植物中也有类似的划分。总的来说,我们的工作表明代谢物分配可能是一个精细调节的过程,这可能对植物的生长、发育和防御产生影响。
更新日期:2020-09-01
down
wechat
bug