当前位置: X-MOL 学术Mechatronics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design, analysis and experimental investigations of a high precision flexure-based microgripper for micro/nano manipulation
Mechatronics ( IF 3.1 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.mechatronics.2020.102396
Tilok Kumar Das , Bijan Shirinzadeh , Mohammadali Ghafarian , Ammar Al-Jodah , Yongmin Zhong , Julian Smith

Abstract In this paper, a flexure-based piezoelectric actuated microgripper is presented for high precision micro/nano manipulation tasks. A new design of microgripper based on a three-stage displacement amplification mechanism is utilized to magnify the piezoelectric actuator displacement. A bridge-type mechanism with a two-sided output port is serially connected with two consecutive lever mechanisms. The output motion on both sides is linearized by parallelogram mechanisms. The single-notch and double-notch circular flexural hinges were used in lever, bridge-type and parallelogram configuration. The displacement amplification and transmission mechanisms are arranged symmetrically to obtain stability of shape and compact layout of the entire microgripper. Analytical modeling was performed to establish an input and output displacement relationship. Finite Element Analysis (FEA) method was utilized to evaluate the performance of the microgripper. The design parameters of the microgripper were optimized through FEA method. The simulation results of the FEA method were validated through experimentation on the established design. The experimental results show that the total displacement amplification ratio of the microgripper is 12.76. The microgripper jaws have a high precision positioning accuracy. The microgripper also achieves a high-level working mode frequency of 1044 Hz, which is capable of accommodating rapid transient responses.

中文翻译:

用于微/纳米操作的高精度弯曲微夹持器的设计、分析和实验研究

摘要 在本文中,提出了一种用于高精度微/纳米操作任务的基于弯曲的压电驱动微夹持器。一种基于三级位移放大机制的新型微夹持器用于放大压电致动器位移。具有两侧输出端口的桥式机构与两个连续的杠杆机构串联。两侧的输出运动由平行四边形机构线性化。单槽和双槽圆形弯曲铰链用于杠杆、桥式和平行四边形配置。位移放大和传动机构对称布置,以获得整个微夹具形状的稳定性和紧凑的布局。执行分析建模以建立输入和输出位移关系。有限元分析(FEA)方法被用来评估微夹持器的性能。通过有限元分析法对微夹具的设计参数进行了优化。FEA 方法的模拟结果通过对既定设计的实验得到验证。实验结果表明,微夹持器的总位移放大率为12.76。微型夹爪具有高精度定位精度。微夹持器还实现了 1044 Hz 的高级工作模式频率,能够适应快速瞬态响应。FEA 方法的模拟结果通过对既定设计的实验得到验证。实验结果表明,微夹持器的总位移放大率为12.76。微型夹爪具有高精度定位精度。微夹持器还实现了 1044 Hz 的高级工作模式频率,能够适应快速瞬态响应。FEA 方法的模拟结果通过对既定设计的实验得到验证。实验结果表明,微夹持器的总位移放大率为12.76。微型夹爪具有高精度定位精度。微夹持器还实现了 1044 Hz 的高级工作模式频率,能够适应快速瞬态响应。
更新日期:2020-08-01
down
wechat
bug