当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Co@N-doped Carbon Nanomaterial Derived by Simple Pyrolysis of Mixed-Ligand MOF as an Active and Stable Oxygen Evolution Electrocatalyst
Applied Surface Science ( IF 6.3 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.apsusc.2020.147081
Gopala Ram Bhadu , Bhavesh Parmar , Parth Patel , Anirban Paul , Jayesh C. Chaudhari , Divesh N. Srivastava , Eringathodi Suresh

Abstract Design and synthesis of cost effective, non-noble and efficient electrocatalysts for oxygen evolution reaction (OER) has prospective in the development of various renewable energy storage and conversion devices. We developed metallic cobalt encased N-doped carbon hybrid nanomaterial with remarkable electrochemical activity from a three-dimensional cobalt (II) based N-containing MOF as a sacrificial template by carbonization. All the carbonized materials have been characterized by various analytical methods to establish the structural and morphological integrity. N-doped graphitic carbon embedded with metallic cobalt (CoNC-900) revealed promising electrochemical activity towards OER in alkaline and hydrogen evolution in acidic media with good stability. Among the series of carbonized MOF material CoNC-900 is designated as highly efficient electrode materials with low overpotential/Tafel slope and superior stability for OER. Standard current density of 10 mA cm−2 was attained at a smaller overpotential (210 mV) by CoNC-900 compared to state-of-the-art RuO2 electrocatalyst (280 mV) indicating OER kinetics response is significantly higher showing the superior activity outperforming most reported electrocatalysts. In view of the best OER performance, experiments have been performed to gauge the electrochemically active surface area, stability/durability and charge transfer resistance (Rct), which also supports the efficient electrocatalytic performance observed in CoNC-900.

中文翻译:

通过简单热解混合配体 MOF 衍生的 Co@N 掺杂碳纳米材料作为活性稳定的析氧电催化剂

摘要 设计和合成具有成本效益、非贵重且高效的析氧反应(OER)电催化剂在开发各种可再生能源存储和转换装置方面具有前景。我们以三维钴 (II) 基含氮 MOF 作为牺牲模板,通过碳化开发了具有显着电化学活性的金属钴包裹的 N 掺杂碳杂化纳米材料。所有碳化材料均已通过各种分析方法进行表征,以建立结构和形态完整性。嵌入金属钴的 N 掺杂石墨碳 (CoNC-900) 显示出在碱性介质中对 OER 和在酸性介质中析氢具有良好稳定性的电化学活性。在碳化 MOF 材料系列中,CoNC-900 被指定为高效电极材料,具有低过电位/塔菲尔斜率和优异的 OER 稳定性。与最先进的 RuO2 电催化剂 (280 mV) 相比,CoNC-900 在较小的过电位 (210 mV) 下获得了 10 mA cm-2 的标准电流密度,表明 OER 动力学响应显着更高,显示出优异的活性大多数报道的电催化剂。鉴于最佳 OER 性能,已进行实验以测量电化学活性表面积、稳定性/耐久性和电荷转移电阻 (Rct),这也支持在 CoNC-900 中观察到的高效电催化性能。与最先进的 RuO2 电催化剂 (280 mV) 相比,CoNC-900 在较小的过电位 (210 mV) 下获得了 10 mA cm-2 的标准电流密度,表明 OER 动力学响应显着更高,显示出优异的活性大多数报道的电催化剂。鉴于最佳 OER 性能,已进行实验以测量电化学活性表面积、稳定性/耐久性和电荷转移电阻 (Rct),这也支持在 CoNC-900 中观察到的高效电催化性能。与最先进的 RuO2 电催化剂 (280 mV) 相比,CoNC-900 在较小的过电位 (210 mV) 下获得了 10 mA cm-2 的标准电流密度,表明 OER 动力学响应显着更高,显示出优异的活性大多数报道的电催化剂。鉴于最佳 OER 性能,已进行实验以测量电化学活性表面积、稳定性/耐久性和电荷转移电阻 (Rct),这也支持在 CoNC-900 中观察到的高效电催化性能。
更新日期:2020-11-01
down
wechat
bug