当前位置: X-MOL 学术Int. J. Adv. Manuf. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanistic force modelling in drilling of AFRP composite considering the chisel edge extrusion
The International Journal of Advanced Manufacturing Technology ( IF 2.9 ) Pub Date : 2020-06-29 , DOI: 10.1007/s00170-020-05608-z
Sinan Liu , Tao Yang , Chang Liu , Yan Jin , Dan Sun , Yifei Shen

Aramid fiber–reinforced plastic (AFRP) composites have been widely used in automotive, aerospace, and defense industries. The common AFRP drilling process tends to cause damage to the composite structures which subsequently affects their fatigue lives and in-service performance. Understanding the mechanism of cutting force generation is crucial in controlling the cutting process for achieving desired hole quality and machining accuracy. This study proposes a novel mechanistic model considering both the cutting action and the extrusion action of the chisel edge. For the first time, the extrusion force generated by the chisel edge has been considered as a rigid wedge penetrating into an elastic half space based on the Hertz contact theory. The total thrust force in AFRP drilling is divided into three components: (i) thrust force generated by the cutting lips, (ii) thrust force generated by the chisel edge cutting action, and (iii) extrusion force generated by the chisel edge extrusion action. The proposed model was then validated by experiments and data was compared with the case where extrusion was not considered. The results show that our novel mechanistic model can provide a more accurate thrust force prediction. The average error of our model was 2.54% against the experimental data, whereas the error seen in conventional model without accounting extrusion was 8.22%. This suggests that the chisel edge extrusion plays a significant part in the drilling of AFRP and hence confirms the necessity of considering extrusion in establishing the associated mechanistic model.



中文翻译:

考虑凿边挤压的AFRP复合材料钻削力学力建模

芳纶纤维增强塑料(AFRP)复合材料已广泛用于汽车,航空航天和国防工业。常见的AFRP钻孔工艺往往会损坏复合结构,继而影响其疲劳寿命和使用性能。了解切削力产生的机理对于控制切削过程以实现所需的孔质量和加工精度至关重要。这项研究提出了一种新型的机械模型,同时考虑了凿子边缘的切削作用和挤压作用。根据Hertz接触理论,凿子边缘产生的挤压力首次被认为是穿透到弹性半空间的刚性楔形。AFRP钻孔中的总推力分为三个部分:(i)切割唇产生的推力,(ii)凿边切割动作产生的推力,以及(iii)凿边挤压动作产生的推力。然后通过实验验证了提出的模型,并将数据与未考虑挤压的情况进行了比较。结果表明,我们新颖的力学模型可以提供更准确的推力预测。我们的模型的平均误差相对于实验数据为2.54%,而在没有考虑挤压的常规模型中看到的误差为8.22%。这表明凿子边缘挤压在AFRP的钻孔中起着重要作用,因此证实了在建立相关的力学模型时考虑挤压的必要性。(iii)由凿子边缘挤压作用产生的挤压力。然后通过实验验证了提出的模型,并将数据与未考虑挤压的情况进行了比较。结果表明,我们新颖的力学模型可以提供更准确的推力预测。我们的模型的平均误差相对于实验数据为2.54%,而在没有考虑挤压的常规模型中看到的误差为8.22%。这表明凿子边缘挤压在AFRP的钻孔中起着重要作用,因此证实了在建立相关的力学模型时考虑挤压的必要性。(iii)由凿子边缘挤压作用产生的挤压力。然后通过实验验证了提出的模型,并将数据与未考虑挤压的情况进行了比较。结果表明,我们新颖的力学模型可以提供更准确的推力预测。我们的模型的平均误差相对于实验数据为2.54%,而在没有考虑挤压的常规模型中看到的误差为8.22%。这表明凿子边缘挤压在AFRP的钻孔中起着重要作用,因此证实了在建立相关的力学模型时考虑挤压的必要性。结果表明,我们新颖的力学模型可以提供更准确的推力预测。我们的模型的平均误差相对于实验数据为2.54%,而在没有考虑挤压的常规模型中看到的误差为8.22%。这表明凿子边缘挤压在AFRP的钻孔中起着重要作用,因此证实了在建立相关的力学模型时考虑挤压的必要性。结果表明,我们新颖的力学模型可以提供更准确的推力预测。我们的模型相对于实验数据的平均误差为2.54%,而在不考虑挤压的常规模型中看到的误差为8.22%。这表明凿子边缘挤压在AFRP的钻孔中起着重要作用,因此证实了在建立相关的力学模型时考虑挤压的必要性。

更新日期:2020-06-30
down
wechat
bug