当前位置: X-MOL 学术Kinemat. Phys. Celest. Bodies › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Morphology of the Flare-Productive Active Region NOAA 9087
Kinematics and Physics of Celestial Bodies ( IF 0.5 ) Pub Date : 2020-06-30 , DOI: 10.3103/s0884591320030022
S. N. Chornogor , N. N. Kondrashova

Abstract—

Evolution and morphological properties of the active region NOAA 9087 are analyzed based on space and ground observational data. Data on hard X-ray (HXR) and soft X-ray (SXR) were obtained from Yohkoh Telescopes (HXT and SXT) and the Geostationary Operational Environmental Satellite. Magnetograms and images in far ultraviolet were obtained from the Michelson Doppler Imager (MDI) and Extreme ultraviolet Imaging Telescope (EIT) of the Solar and Heliospheric Observatory (SOHO). White light images from the Big Bear Observatory (BBSO) and Hα-filtergrams from the Meudon Observatory were used. Data on the 2.69 GHz radio flux were taken from the World Data Center of the Learmonth Observatory (Australia). The investigated active region (AR) was observed on the solar disk from July 15 to 27, 2000, and showed a complex multipolar magnetic field configuration. A high flare activity and emissions were observed in this AR. According to Solar Geophysical Data (SGD), the 3N/M6.4 two-ribbon flare occurred on July 19, 2000, and lasted 2.5 h. The energy was released sequentially in different locations in the AR. All observational data indicate a continuous change in the structure and power of the flare at different wavelengths. HXR and type III radio bursts were observed at the initial phase of the flare. The HXR coronal source was above the line of magnetic polarity inversion of the AR. Observational evidence of magnetic reconnections during the main phase of the flare is obtained based on the analysis of sequential images of loops in the ultraviolet wavelength band. Postflare loops were observed in the 19.5 nm passband at the gradual phase, which is a manifestation of the EUV late phase. These extended loops connect the primary and secondary energy release sites of the flare. There was an additional energy transfer and heating mechanism during the main phase of the flare.


中文翻译:

产生耀斑的活性区NOAA 9087的形态

摘要-

根据空间和地面观测数据分析了活动区NOAA 9087的演变和形态特性。硬X射线(HXR)和软X射线(SXR)的数据是从Yohkoh望远镜(HXT和SXT)和对地静止环境卫星获得的。远紫外线的磁图和图像是从太阳和日球天文台(SOHO)的迈克尔逊多普勒成像仪(MDI)和极紫外成像望远镜(EIT)获得的。从大熊天文台(BBSO)和H白光图像α -使用Meudon天文台的过滤图。有关2.69 GHz无线电通量的数据来自利尔蒙德天文台(澳大利亚)的世界数据中心。2000年7月15日至27日在太阳能电池盘上观察到了研究的活动区域(AR),并显示出复杂的多极磁场结构。在该AR中观察到高火炬活动和排放。根据太阳地球物理数据(SGD),3N / M6.4二色带耀斑发生在2000年7月19日,持续了2.5小时。能量在AR中的不同位置依次释放。所有观测数据表明,在不同波长下,火炬的结构和功率不断变化。在火炬的初始阶段观察到HXR和III型无线电爆发。HXR日冕源位于AR的磁极性反转线的上方。通过对紫外波段中环的连续图像进行分析,可以获得火炬主相期间磁重连的观测证据。在渐变阶段,在19.5 nm通带中观察到了耀斑后环路,这是EUV后期阶段的体现。这些扩展的回路连接火炬的一次和二次能量释放部位。在火炬的主要阶段还有一个额外的能量传递和加热机制。这些扩展的回路连接火炬的一次和二次能量释放部位。在火炬的主要阶段还有一个额外的能量传递和加热机制。这些扩展的回路连接火炬的一次和二次能量释放部位。在火炬的主要阶段还有一个额外的能量传递和加热机制。
更新日期:2020-06-30
down
wechat
bug