当前位置: X-MOL 学术Int. J. Mech. Mater. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Micromechanics-based modeling of elastic modulus and coefficient of thermal expansion for CNT-metal nanocomposites: effects of waviness, clustering and aluminum carbide layer
International Journal of Mechanics and Materials in Design ( IF 2.7 ) Pub Date : 2020-06-30 , DOI: 10.1007/s10999-020-09503-z
Zhigang Wang , Yuan Yuan

A micromechanical model is analytically developed to estimate the elastic modulus and the coefficient of thermal expansion (CTE) of the carbon nanotube (CNT)-reinforced metal matrix nanocomposites (MMNCs). The effects of two important microstructural features, including the CNT clusters and the waviness on the thermo-elastic response are investigated. The formation of aluminum carbide (Al4C3) layer due to the interaction between the CNT and the metal matrix is considered. A good agreement is found between the available experimental data and the simulation results considering the waviness, clustering, and Al4C3 interphase. The influences of volume fraction, and dispersion type of CNTs and Al4C3 layer thickness on the elastic modulus and the CTE of the CNT-metal nanocomposites are examined. The non-straight shape and the clustering of CNTs are two critical factors that can significantly degrade the thermo-elastic properties. From the mechanical viewpoint on designing the CNT-metal nanocomposites, producing the homogeneous microstructure without the CNT clusters and using the straight CNTs are necessary factors to obtain the maximum level of the thermomechanical performances. The numerical results show that the formation of the Al4C3 interphase may improve the MMNC macroscopic engineering constants. It is observed that aligning the CNTs into the metal matrixes leads to a significant improvement in the MMNC thermo-elastic properties. The proposed micromechanical approach can be a suitable model to predict the elastic modulus and the CTE of the CNT-reinforced MMNCs considering the important microstructural features.



中文翻译:

基于微力学的碳纳米管-金属纳米复合材料弹性模量和热膨胀系数建模:波纹度,团簇和碳化铝层的影响

分析性地开发了微机械模型,以估计碳纳米管(CNT)增强的金属基质纳米复合材料(MMNC)的弹性模量和热膨胀系数(CTE)。研究了两个重要的微观结构特征,包括碳纳米管团簇和波纹度对热弹性响应的影响。考虑了由于CNT与金属基体之间的相互作用而形成的碳化铝(Al 4 C 3)层。考虑到波纹度,团簇和Al 4 C 3相间存在关系,可用的实验数据与模拟结果之间找到了很好的一致性。碳纳米管和Al 4 C 3的体积分数,分散类型的影响研究了CNT-金属纳米复合材料的弹性模量和CTE上的层厚。CNT的非直线形状和聚集是两个可以显着降低热弹性性能的关键因素。从设计CNT-金属纳米复合材料的机械观点来看,生产没有CNT簇的均质微观结构和使用直链CNT是获得最大水平的热机械性能的必要因素。数值结果表明,Al 4 C 3的形成相变可改善MMNC宏观工程常数。观察到将CNT排列成金属基质导致MMNC热弹性性质的显着改善。考虑到重要的微结构特征,所提出的微机械方法可以成为预测CNT增强MMNC的弹性模量和CTE的合适模型。

更新日期:2020-06-30
down
wechat
bug