当前位置: X-MOL 学术Emerging Mater. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene: an exotic condensed matter and its impact on technology
Emerging Materials Research ( IF 1.3 ) Pub Date : 2020-06-04 , DOI: 16.00147
Bijay Kumar Sharma

Graphene is a (2 + 1)-dimensional quantum electrodynamic system. The carriers have a vanishing mass and a relativistic velocity of 106 m/s, obeying charge-conjugate parity time symmetry. Graphene exhibits the Klein paradox, due to which, through spatial confinement, a bandgap can be opened in zigzag graphene nanoribbons for logic applications. The high Debye temperature of 2800 K ensures that phonons are frozen out and lattice scattering is suppressed at 300 K. The perfect crystallinity ensures that defect/impurity scattering is suppressed. The two together give very high electrical conductivity and electric mobility. This permits a current density of 108 A/cm2, about 100 times greater than that in copper. Single-layer graphene has a thermal conductivity of 3000–5000 (W/m)/K at 300 K, but graphite has K = 2000 (W/m)/K. This may open up few-layer graphene applications in thermal management of nanoelectronics. The half-integer quantum Hall effect and non-zero Berry phase have been verified in the laboratory. These magneto-transport properties are a result of the exceptional topology of the graphene band structure. Ballistic transport observable up to 300 K makes graphene an ideal replacement for silicon (Si) electronics. The optical response of graphene is determined by the fine-structure constant over a wide band of the visible spectrum, and hence, it is ideal for high-speed optical modulators. This paper describes a commercially significant process for synthesizing large-area fold-free and defect-free graphene.

中文翻译:

石墨烯:外来凝聚物及其对技术的影响

石墨烯是一个(2 +1)维量子电动力学系统。载流子的质量消失,相对论速度为10 6  m / s,遵循电荷共轭奇偶时间对称性。石墨烯表现出克莱因悖论,因此,通过空间限制,可以在之字形石墨烯纳米带中打开带隙以用于逻辑应用。2800 K的高德拜温度可确保声子冻结并在300 K时抑制晶格散射。完美的结晶度可确保抑制缺陷/杂质散射。两者一起提供非常高的电导率和电迁移率。这允许10 8  A / cm 2的电流密度约为铜的100倍。单层石墨烯在300 K时的热导率为3000–5000(W / m)/ K,而石墨的K为= 2000(W / m)/ K。这可能会在纳米电子学的热管理中打开几层石墨烯的应用。半整数量子霍尔效应和非零贝里相已在实验室中得到验证。这些磁传输特性是石墨烯能带结构异常拓扑的结果。高达300 K的可观察到的弹道传输使石墨烯成为硅(Si)电子产品的理想替代品。石墨烯的光学响应由可见光谱宽带上的精细结构常数决定,因此,它是高速光学调制器的理想选择。本文介绍了一种在商业上有意义的合成大面积无褶皱和无缺陷石墨烯的方法。
更新日期:2020-06-30
down
wechat
bug