当前位置: X-MOL 学术ACM Trans. Reconfig. Technol. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reconfigurable Framework for Environmentally Adaptive Resilience in Hybrid Space Systems
ACM Transactions on Reconfigurable Technology and Systems ( IF 3.1 ) Pub Date : 2020-07-07 , DOI: 10.1145/3398380
Sebastian Sabogal 1 , Alan George 1 , Christopher Wilson 2
Affiliation  

Due to ongoing innovations in both sensor technology and spacecraft autonomy, onboard space processing continues to be outpaced by the escalating computational demands required for next-generation missions. Commercial-off-the-shelf, hybrid system-on-chips, combining fixed-logic CPUs with reconfigurable-logic FPGAs, present numerous architectural advantages that address onboard computing challenges. However, commercial devices are highly susceptible to space radiation and require dependable computing strategies to mitigate radiation-induced single-event effects. Depending upon the mission, the dynamics of the near-Earth space-radiation environment expose spacecraft to radiation fluxes that can vary by several orders of magnitude. By adopting an adaptive approach to dependable computing, spacecraft computers can reconfigure system resources to efficiently accommodate changing environmental conditions to maximize system performance while satisfying availability constraints throughout the mission. In this article, we propose Hybrid, Adaptive, Reconfigurable Fault Tolerance (HARFT), a reconfigurable framework for environmentally adaptive resilience in hybrid space systems. Furthermore, we describe a methodology to model adaptive systems, represented as phased-mission systems using Markov chains, subject to the near-Earth space-radiation environment, using a combination of orbital perturbation, geomagnetic field, and single-event effect rate prediction tools. We apply this methodology to evaluate the HARFT architecture using various static and adaptive strategies for several orbital case studies and demonstrate the achievable performability gains.

中文翻译:

混合空间系统环境适应性弹性的可重构框架

由于传感器技术和航天器自主性的不断创新,机载空间处理继续被下一代任务所需的不断升级的计算需求所超越。商业现成的混合片上系统将固定逻辑 CPU 与可重构逻辑 FPGA 相结合,具有解决板载计算挑战的众多架构优势。然而,商业设备对空间辐射高度敏感,需要可靠的计算策略来减轻辐射引起的单事件效应。根据任务的不同,近地空间辐射环境的动力学使航天器暴露在可以变化几个数量级的辐射通量中。通过对可靠计算采用自适应方法,航天器计算机可以重新配置系统资源,以有效地适应不断变化的环境条件,从而最大限度地提高系统性能,同时满足整个任务的可用性限制。在本文中,我们提出了混合、自适应、可重构容错 (HARFT),这是一种用于混合空间系统中环境自适应弹性的可重构框架。此外,我们描述了一种对自适应系统进行建模的方法,该系统表示为使用马尔可夫链的分阶段任务系统,受近地空间辐射环境影响,使用轨道扰动、地磁场和单事件效应率预测工具的组合.
更新日期:2020-07-07
down
wechat
bug