当前位置: X-MOL 学术J. Reinf. Plast. Compos. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crashworthiness of polystyrene foam and cardboard panels reinforced with carbon fiber reinforced polymer and glass fiber reinforced polymer composite rods
Journal of Reinforced Plastics and Composites ( IF 2.3 ) Pub Date : 2020-05-04 , DOI: 10.1177/0731684420924083
Gabriel Y Fortin 1 , Elsayed A Elbadry 1, 2 , Atsushi Yokoyama 1
Affiliation  

This article presents an experimental study on the quasi-static crushing performance of carbon fiber reinforced polymer (CFRP) rods consisting of unidirectional carbon fibers wrapped by braided glass fibers. Rods with and without a taper are tested and then inserted in extruded and expanded polystyrene foam and cardboard panels. Hybrid columnar aluminum tube–CFRP rod structures are also tested in all panel materials. These results are compared to those based on glass fiber reinforced polymer (GFRP) rods, GFRP rods in polystyrene foams, and to GFRP rods in cardboard from a previous study. Tapered CFRP rods exhibit progressive crushing behavior with specific energy absorption superior to GFRP rods, with values of 82 kJ/kg and 65 kJ/kg, respectively. Moreover, the highest specific energy absorption (111 kJ/kg) is obtained in hybrid columnar aluminum tube–CFRP tapered rods, exceeding values of aluminum tubes (89 kJ/kg) and equivalent structures containing GFRP rods (102 kJ/kg). Within panels, cardboard produces the largest increase in mean load of CFRP and GFRP rods due to most constraining fiber splaying during crushing, followed by extruded foam, and lastly expanded foam. However, crushing displacement is most restricted in cardboard due to earlier final compaction. The smallest variations in crushing load occur in extruded polystyrene due to greater homogeneity throughout the foam structure.

中文翻译:

用碳纤维增强聚合物和玻璃纤维增​​强聚合物复合棒增强的聚苯乙烯泡沫和纸板的耐撞性

本文介绍了由编织玻璃纤维包裹的单向碳纤维组成的碳纤维增强聚合物 (CFRP) 棒的准静态破碎性能的实验研究。测试带锥度和不带锥度的杆,然后将其插入挤出和膨胀的聚苯乙烯泡沫和纸板面板中。混合柱状铝管-CFRP 杆结构也在所有面板材料中进行了测试。这些结果与之前研究中基于玻璃纤维增​​强聚合物 (GFRP) 棒、聚苯乙烯泡沫中的 GFRP 棒以及纸板中的 GFRP 棒的结果进行了比较。锥形 CFRP 棒表现出渐进式破碎行为,比能量吸收优于 GFRP 棒,其值分别为 82 kJ/kg 和 65 kJ/kg。而且,在混合柱状铝管 - CFRP 锥形棒中获得了最高的比能量吸收 (111 kJ/kg),超过了铝管 (89 kJ/kg) 和包含 GFRP 棒的等效结构 (102 kJ/kg) 的值。在面板中,由于在压碎过程中对纤维展开的约束最大,其次是挤出泡沫,最后是膨胀泡沫,因此纸板使 CFRP 和 GFRP 棒的平均载荷增加最大。然而,由于较早的最终压实,破碎位移在纸板中受到的限制最大。由于整个泡沫结构的均匀性更高,挤压聚苯乙烯的压碎载荷变化最小。由于在压碎过程中对纤维展开的约束最大,因此纸板产生的 CFRP 和 GFRP 棒的平均载荷增加最大,其次是挤出泡沫,最后是膨胀泡沫。然而,由于较早的最终压实,破碎位移在纸板中受到的限制最大。由于整个泡沫结构的均匀性更高,挤压聚苯乙烯的压碎载荷变化最小。由于在压碎过程中对纤维展开的约束最大,因此纸板产生的 CFRP 和 GFRP 棒的平均载荷增加最大,其次是挤出泡沫,最后是膨胀泡沫。然而,由于较早的最终压实,破碎位移在纸板中最受限制。由于整个泡沫结构的均匀性更高,挤压聚苯乙烯的压碎载荷变化最小。
更新日期:2020-05-04
down
wechat
bug