当前位置: X-MOL 学术Chem. Soc. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Medical micro/nanorobots in complex media.
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2020-06-29 , DOI: 10.1039/d0cs00309c
Zhiguang Wu 1 , Ye Chen , Daniel Mukasa , On Shun Pak , Wei Gao
Affiliation  

Medical micro/nanorobots have received tremendous attention over the past decades owing to their potential to be navigated into hard-to-reach tissues for a number of biomedical applications ranging from targeted drug/gene delivery, bio-isolation, detoxification, to nanosurgery. Despite the great promise, the majority of the past demonstrations are primarily under benchtop or in vitro conditions. Many developed micro/nanoscale propulsion mechanisms are based on the assumption of a homogeneous, Newtonian environment, while realistic biological environments are substantially more complex. Moving toward practical medical use, the field of micro/nanorobotics must overcome several major challenges including propulsion through complex media (such as blood, mucus, and vitreous) as well as deep tissue imaging and control in vivo. In this review article, we summarize the recent research efforts on investigating how various complexities in biological environments impact the propulsion of micro/nanoswimmers. We also highlight the emerging technological approaches to enhance the locomotion of micro/nanorobots in complex environments. The recent demonstrations of in vivo imaging, control and therapeutic medical applications of such micro/nanorobots are introduced. We envision that continuing materials and technological innovations through interdisciplinary collaborative efforts can bring us steps closer to the fantasy of “swallowing a surgeon”.

中文翻译:

复杂介质中的医用微型/纳米机器人。

微型/纳米机器人在过去几十年中受到了极大的关注,这是因为它们有潜力进入许多生物医学应用中难以到达的组织,从靶向药物/基因递送,生物分离,解毒到纳米外科。尽管前景广阔,但过去的大多数示威活动主要在台式或体外进行条件。许多发达的微米/纳米级推进机制都是基于均质牛顿环境的假设,而现实的生物环境要复杂得多。朝着实际的医学用途发展,微/纳米粒子学领域必须克服几个主要挑战,包括通过复杂介质(例如血液,粘液和玻璃体)推进以及体内深层组织成像和控制。在这篇综述文章中,我们总结了有关研究生物环境中各种复杂性如何影响微/纳米游泳者推进力的最新研究成果。我们还将重点介绍在复杂环境中增强微型/纳米机器人运动的新兴技术方法。体内最近的示范介绍了这种微型/纳米机器人的成像,控制和治疗医学应用。我们设想通过跨学科的合作不断进行材料和技术创新,可以使我们更接近“吞下外科医生”的幻想。
更新日期:2020-06-29
down
wechat
bug