当前位置: X-MOL 学术Trans. Inst. Meas. Control › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An observer-based adaptive control design for the maglev system
Transactions of the Institute of Measurement and Control ( IF 1.7 ) Pub Date : 2020-06-29 , DOI: 10.1177/0142331220932396
Baris Bidikli 1
Affiliation  

In this study, a nonlinear adaptive controller that can be used to control a magnetic levitation (maglev) is designed. The designed controller is equipped with a nonlinear velocity observer to provide the control without measuring velocity. Its capability to adaptively compensate all parametric uncertainties during the control process is one of the main advantages of this controller. Utilizing this capability, control of the maglev system can be realized without using any knowledge about system parameters. Due to the fast convergence capability of the designed observer and the desired model dependent structure of the adaptation rules, the proposed control design provides better performance than most of the robust and adaptive controllers that have been frequently used to control maglev system. The observer dynamics are analyzed via a Lyapunov–like preliminary analysis. Then, convergence of the observation and the tracking errors under the closed–loop operation and stability of the closed–loop error dynamics are proven via a Lyapunov–based stability analysis where the result obtained in the mentioned preliminary analysis is used. Performance of the designed observer–controller couple is demonstrated via experimental results. The efficiency of the designed controller is tested against a robust proportional–integral–derivative (PID) controller and an another Lyapunov–based nonlinear robust controller called as robust integral of sign of error (RISE) controller. Experimental results show that the designed controller performs the best tracking performance with the least control effort among these three controllers.

中文翻译:

基于观测器的磁悬浮系统自适应控制设计

在这项研究中,设计了一种可用于控制磁悬浮 (maglev) 的非线性自适应控制器。设计的控制器配备了非线性速度观测器,以提供无需测量速度的控制。其在控制过程中自适应补偿所有参数不确定性的能力是该控制器的主要优势之一。利用这种能力,可以在不使用任何系统参数知识的情况下实现对磁悬浮系统的控制。由于所设计的观测器的快速收敛能力和自适应规则的所需模型相关结构,所提出的控制设计比大多数经常用于控制磁悬浮系统的鲁棒和自适应控制器提供更好的性能。观察者动力学通过类似李雅普诺夫的初步分析进行分析。然后,通过基于 Lyapunov 的稳定性分析证明闭环操作下观测和跟踪误差的收敛性以及闭环误差动力学的稳定性,其中使用了上述初步分析中获得的结果。通过实验结果证明了所设计的观测器-控制器对的性能。所设计控制器的效率通过稳健的比例-积分-微分 (PID) 控制器和另一个基于 Lyapunov 的非线性稳健控制器(称为稳健误差符号积分 (RISE) 控制器)进行测试。实验结果表明,所设计的控制器在这三个控制器中以最少的控制工作执行最佳的跟踪性能。闭环操作下观测和跟踪误差的收敛性以及闭环误差动力学的稳定性通过基于李雅普诺夫的稳定性分析来证明,其中使用了上述初步分析中获得的结果。通过实验结果证明了所设计的观察者-控制器对的性能。所设计控制器的效率通过稳健的比例-积分-微分 (PID) 控制器和另一个基于 Lyapunov 的非线性稳健控制器(称为稳健误差符号积分 (RISE) 控制器)进行测试。实验结果表明,所设计的控制器在这三个控制器中以最少的控制工作执行最佳的跟踪性能。闭环操作下观测和跟踪误差的收敛性以及闭环误差动力学的稳定性通过基于李雅普诺夫的稳定性分析来证明,其中使用了上述初步分析中获得的结果。通过实验结果证明了所设计的观察者-控制器对的性能。所设计控制器的效率通过稳健的比例-积分-微分 (PID) 控制器和另一个基于 Lyapunov 的非线性稳健控制器(称为稳健误差符号积分 (RISE) 控制器)进行测试。实验结果表明,所设计的控制器在这三个控制器中以最少的控制工作执行最佳的跟踪性能。
更新日期:2020-06-29
down
wechat
bug