当前位置: X-MOL 学术Math. Probl. Eng. › 论文详情
An Iterative Method for Shape Optimal Design of Stokes–Brinkman Equations with Heat Transfer Model
Mathematical Problems in Engineering ( IF 1.009 ) Pub Date : 2020-06-29 , DOI: 10.1155/2020/9405018
Wenjing Yan; Feifei Jing; Jiangyong Hou; Zhiming Gao; Nannan Zheng

This work is concerned with the shape optimal design of an obstacle immersed in the Stokes–Brinkman fluid, which is also coupled with a thermal model in the bounded domain. The shape optimal problem is formulated and analyzed based on the framework of the continuous adjoint method, with the advantage that the computing cost of the gradients and sensitivities is independent of the number of design variables. Then, the velocity method is utilized to describe the domain deformation, and the Eulerian derivative for the cost functional is established by applying the differentiability of a minimax problem based on the function space parametrization technique. Moreover, an iterative algorithm is proposed to optimize the boundary of the obstacle in order to reduce the total dissipation energy. Finally, numerical examples are presented to illustrate the feasibility and effectiveness of our method.
更新日期:2020-06-29

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug