当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An even better Density Increment Theorem and its application to Hadwiger's Conjecture
arXiv - CS - Discrete Mathematics Pub Date : 2020-06-25 , DOI: arxiv-2006.14945
Luke Postle

In 1943, Hadwiger conjectured that every graph with no $K_t$ minor is $(t-1)$-colorable for every $t\ge 1$. In the 1980s, Kostochka and Thomason independently proved that every graph with no $K_t$ minor has average degree $O(t\sqrt{\log t})$ and hence is $O(t\sqrt{\log t})$-colorable. Recently, Norin, Song and the author showed that every graph with no $K_t$ minor is $O(t(\log t)^{\beta})$-colorable for every $\beta > 1/4$, making the first improvement on the order of magnitude of the $O(t\sqrt{\log t})$ bound. More recently, the author showed that every graph with no $K_t$ minor is $O(t (\log t)^{\beta})$-colorable for every $\beta > 0$; more specifically, they are $t \cdot 2^{ O((\log \log t)^{2/3}) }$-colorable. In combination with that work, we show in this paper that every graph with no $K_t$ minor is $O(t (\log \log t)^{6})$-colorable.

中文翻译:

一个更好的密度增量定理及其在哈德维格猜想中的应用

1943 年,Hadwiger 推测每个没有 $K_t$ 小调的图对于每个 $t\ge 1$ 都是 $(t-1)$-可着色的。在 1980 年代,Kostochka 和 Thomason 独立证明了每个没有 $K_t$ 次要的图都有平均度 $O(t\sqrt{\log t})$,因此是 $O(t\sqrt{\log t})$ -可着色。最近,Norin、Song 和作者表明,对于每一个 $\beta > 1/4$,每个没有 $K_t$ 次要的图都是 $O(t(\log t)^{\beta})$-可着色的,使得$O(t\sqrt{\log t})$ 界限的数量级上的第一次改进。最近,作者展示了每个没有 $K_t$ 次要的图对于每个 $\beta > 0$ 都是 $O(t (\log t)^{\beta})$-colorable; 更具体地说,它们是 $t \cdot 2^{ O((\log \log t)^{2/3}) }$-可着色的。结合这项工作,我们在本文中展示了每个没有 $K_t$ 次要的图都是 $O(t (\log \log t)^{6})$-可着色的。
更新日期:2020-09-04
down
wechat
bug