当前位置: X-MOL 学术arXiv.cs.GT › 论文详情
Kuhn's Equivalence Theorem for Games in Intrinsic Form
arXiv - CS - Computer Science and Game Theory Pub Date : 2020-06-26 , DOI: arxiv-2006.14838
Benjamin HeymannCERMICS; Michel de LaraCERMICS; Jean-Philippe ChancelierCERMICS

We state and prove Kuhn's equivalence theorem for a new representation of games, the intrinsic form. First, we introduce games in intrinsic form where information is represented by $\sigma$-fields over a product set. For this purpose, we adapt to games the intrinsic representation that Witsenhausen introduced in control theory. Those intrinsic games do not require an explicit description of the play temporality, as opposed to extensive form games on trees. Second, we prove, for this new and more general representation of games, that behavioral and mixed strategies are equivalent under perfect recall (Kuhn's theorem). As the intrinsic form replaces the tree structure with a product structure, the handling of information is easier. This makes the intrinsic form a new valuable tool for the analysis of games with information.
更新日期:2020-06-29

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
南京工业大学
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
湖南大学
清华大学
吴杰
赵延川
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug