当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Berry curvature memory through electrically driven stacking transitions
Nature Physics ( IF 17.6 ) Pub Date : 2020-06-29 , DOI: 10.1038/s41567-020-0947-0
Jun Xiao , Ying Wang , Hua Wang , C. D. Pemmaraju , Siqi Wang , Philipp Muscher , Edbert J. Sie , Clara M. Nyby , Thomas P. Devereaux , Xiaofeng Qian , Xiang Zhang , Aaron M. Lindenberg

In two-dimensional layered quantum materials, the stacking order of the layers determines both the crystalline symmetry and electronic properties such as the Berry curvature, topology and electron correlation1,2,3,4. Electrical stimuli can influence quasiparticle interactions and the free-energy landscape5,6, making it possible to dynamically modify the stacking order and reveal hidden structures that host different quantum properties. Here, we demonstrate electrically driven stacking transitions that can be applied to design non-volatile memory based on Berry curvature in few-layer WTe2. The interplay of out-of-plane electric fields and electrostatic doping controls in-plane interlayer sliding and creates multiple polar and centrosymmetric stacking orders. In situ nonlinear Hall transport reveals that such stacking rearrangements result in a layer-parity-selective Berry curvature memory in momentum space, where the sign reversal of the Berry curvature and its dipole only occurs in odd-layer crystals. Our findings open an avenue towards exploring coupling between topology, electron correlations and ferroelectricity in hidden stacking orders and demonstrate a new low-energy-cost, electrically controlled topological memory in the atomically thin limit.



中文翻译:

通过电动堆叠过渡实现浆果曲率记忆

在二维分层量子材料中,各层的堆叠顺序决定了晶体的对称性和电子性质,例如贝里曲率,拓扑和电子相关性1,2,3,4。电刺激可以影响准粒子相互作用和自由能态5,6,从而可以动态修改堆叠顺序并揭示具有不同量子特性的隐藏结构。在这里,我们演示了电驱动的堆叠过渡,可将其应用于基于多层WTe 2中的Berry曲率设计非易失性存储器。平面外电场和静电掺杂的相互作用控制了平面内层间滑动,并创建了多个极性和中心对称的堆叠顺序。原位非线性霍尔传输表明,这种堆叠重排导致动量空间中的层奇偶性选择贝瑞曲率记忆,其中贝瑞曲率及其偶极子的符号反转仅发生在奇数层晶体中。我们的发现为探索拓扑,电子相关性和铁电之间隐藏的堆叠顺序之间的耦合开辟了一条途径,并证明了一种新的低能耗,电控拓扑存储在原子上薄的极限。

更新日期:2020-06-29
down
wechat
bug