当前位置: X-MOL 学术J. Lond. Math. Soc. › 论文详情
Koszul calculus of preprojective algebras
Journal of the London Mathematical Society ( IF 1.121 ) Pub Date : 2020-06-28 , DOI: 10.1112/jlms.12362
Roland Berger; Rachel Taillefer

We show that the Koszul calculus of a preprojective algebra, whose graph is distinct from A 1 and A 2 , vanishes in any (co)homological degree p > 2 . Moreover, its (higher) cohomological calculus is isomorphic as a bimodule to its (higher) homological calculus, by exchanging degrees p and 2 − p , and we prove a generalised version of the 2‐Calabi–Yau property. For the ADE Dynkin graphs, the preprojective algebras are not Koszul and they are not Calabi–Yau in the sense of Ginzburg's definition, but they satisfy our generalised Calabi–Yau property and we say that they are Koszul complex Calabi–Yau (Kc–Calabi–Yau) of dimension 2. For Kc–Calabi–Yau (quadratic) algebras of any dimension, defined in terms of derived categories, we prove a Poincaré Van den Bergh duality theorem. We compute explicitly the Koszul calculus of preprojective algebras for the ADE Dynkin graphs.
更新日期:2020-06-29

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
南京工业大学
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
湖南大学
清华大学
吴杰
赵延川
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug