当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analyzing Interface Recombination in Lead‐Halide Perovskite Solar Cells with Organic and Inorganic Hole‐Transport Layers
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2020-06-28 , DOI: 10.1002/admi.202000366
Jinane Haddad 1 , Benedikt Krogmeier 1 , Benjamin Klingebiel 1 , Lisa Krückemeier 1 , Stephanie Melhem 1 , Zhifa Liu 1 , Jürgen Hüpkes 1 , Sanjay Mathur 2 , Thomas Kirchartz 1, 3
Affiliation  

The interfaces between absorber and transport layers are shown to be critical for perovskite device performance. However, quantitative characterization of interface recombination has so far proven to be highly challenging in working perovskite solar cells. Here, methylammonium lead halide (CH3NH3PbI3) perovskite solar cells are studied based on a range of different hole‐transport layers, namely, an inorganic hole‐transport layer CuOx, an organic hole‐transport layer poly(triarylamine) (PTAA), and a bilayer of CuOx/PTAA. The cells are completed by a [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM)/bathocuproine/Ag electron contact. Energy levels are characterized using photoelectron spectroscopy and recombination dynamics by combining steady‐state photoluminescence and transient photoluminescence with numerical simulations. While the PTAA‐based devices hardly show any interface recombination losses and open‐circuit voltages >1.2 V, substantial losses are observed for the samples with a direct CuOx/perovskite interface. These losses are assigned to a combination of energetic misalignment at the CuOx/perovskite interface coupled with increased interface recombination velocities at the perovskite/PCBM interface.

中文翻译:

分析具有有机和无机空穴传输层的卤化钙钛矿型铅酸锂电池的界面重组

吸收层和传输层之间的界面对于钙钛矿设备的性能至关重要。然而,迄今为止,在钙钛矿型太阳能电池的工作中,界面重组的定量表征已被证明极具挑战性。在此,基于一系列不同的空穴传输层,即无机空穴传输层CuO x,有机空穴传输层聚三芳基胺,研究了甲基铵卤化铅(CH 3 NH 3 PbI 3)钙钛矿型太阳能电池。(PTAA)和双层CuO x / PTAA。细胞由[6,6] -phenyl-C 61制成丁酸甲酯(PCBM)/ bathocuproine / Ag电子触点。通过将稳态光致发光和瞬态光致发光与数值模拟相结合,使用光电子能谱和重组动力学来表征能级。尽管基于PTAA的设备几乎没有显示任何界面重组损耗,并且开路电压> 1.2 V,但对于具有直接CuO x /钙钛矿界面的样品,却观察到了相当大的损耗。这些损失归因于CuO x /钙钛矿界面处的高能失准与钙钛矿/ PCBM界面处界面复合速度的增加。
更新日期:2020-06-28
down
wechat
bug