当前位置: X-MOL 学术Precambrian. Res. › 论文详情
Evidence for a concealed Midcontinent Rift-related northeast Iowa intrusive complex
Precambrian Research ( IF 4.427 ) Pub Date : 2020-06-29 , DOI: 10.1016/j.precamres.2020.105845
Benjamin J. Drenth; A. Kate Souders; Klaus J. Schulz; Joshua M. Feinberg; Raymond R. Anderson; Val.W. Chandler; William F. Cannon; Ryan J. Clark

Large amplitude aeromagnetic and gravity anomalies over a ~9500 km2 area of northeast Iowa and southeast Minnesota have been interpreted to reflect the northeast Iowa intrusive complex (NEIIC), a buried intrusive igneous complex composed of mafic/ultramafic rocks in the Yavapai Province (1.8–1.7 Ga). Hundreds of meters of Paleozoic sedimentary cover and a paucity of basement drilling have prevented detailed studies of the NEIIC. Long considered, but not proven, to be related to the ~1.1 Ga Midcontinent Rift System (MRS), the NEIIC is comparable in areal extent to the richly mineralized Duluth Complex and is similarly located near the margin of the MRS. New geochronological and geophysical data together support an MRS affinity for the NEIIC. A dike swarm imaged in aeromagnetic data is cut by intrusions of the NEIIC, and a new apatite U-Pb date of ~1170 Ma on one of the dikes thus represents a maximum age for the NEIIC. A minimum age constraint is suggested by (1) large-volume magmatism associated with the MRS that was the last such event to affect the region; and (2) the presence of reversely magnetized dikes, similar in character to MRS-related dikes elsewhere, that cut several intrusions of the NEIIC. The NEIIC is largely characterized by the presence of multiple zoned intrusions, many of which contain large volumes of mafic-ultramafic rocks and have strong geophysical similarities to alkaline intrusive complexes elsewhere, including the MRS-related Coldwell Complex of Ontario. The largest of the zoned intrusions are ~40 km in diameter and are interpreted to have thicknesses of many kilometers. Suspected faults, alignments of intrusions, and intrusive margins tend to be aligned along northwest and northeast trends that match the trends of the Belle Plaine fault zone and Fayette structural zone, both previously interpreted as pre-MRS, possibly lithospheric-scale discontinuities that may have controlled NEIIC emplacement. These interpretations collectively imply notable potential for the NEIIC to host several different types of undiscovered base metal and critical mineral deposits.
更新日期:2020-07-08

 

全部期刊列表>>
AI核心技术
10years
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
廖矿标
李远
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug