当前位置: X-MOL 学术J. Math. Pures Appl. › 论文详情
Existence and regularity of Faber-Krahn minimizers in a Riemannian manifold
Journal de Mathématiques Pures et Appliquées ( IF 1.885 ) Pub Date : 2020-06-29 , DOI: 10.1016/j.matpur.2020.06.006
Jimmy Lamboley; Pieralberto Sicbaldi

In this paper, we study the minimization of λ1(Ω), the first Dirichlet eigenvalue of the Laplace-Beltrami operator, within the class of open sets Ω of fixed volume in a Riemmanian manifold (M,g). In the Euclidian setting (when (M,g)=(Rn,e)), the well-known Faber-Krahn inequality asserts that the solution of such problem is any ball of suitable volume. Even if similar results are known or may be expected for Riemannian manifolds with symmetries, we cannot expect to find explicit solutions for general manifolds (M,g). In this paper we study existence and regularity properties for this spectral shape optimization problem in a Riemannian setting, in a similar fashion as for the isoperimetric problem. We first give an existence result in the context of compact Riemannian manifolds, and we discuss the case of non-compact manifolds by giving a counter-example to existence. We then focus on the regularity theory for this problem, and using the tools coming from the theory of free boundary problems, we show that solutions are smooth up to a possible residual set of co-dimension 5 or higher.
更新日期:2020-06-29

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
南京工业大学
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
湖南大学
清华大学
吴杰
赵延川
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug