当前位置: X-MOL 学术Environ. Pollut. › 论文详情
Temporal variation analysis and risk assessment of neonicotinoid residues from tea in China
Environmental Pollution ( IF 6.792 ) Pub Date : 2020-06-29 , DOI: 10.1016/j.envpol.2020.115119
Shaohua Li; Jun Ren; Lifeng Li; Rongbing Chen; Jingguang Li; Yunfeng Zhao; Dawei Chen; Yongning Wu

The extensive use of neonicotinoids (NEOs) has caused the release of wide-ranging of residues to the environment and food, and their potential health risks are now receiving more attention. In this study, three surveys were conducted to obtain the overall profiles of NEO residue levels (seven NEOs and one metabolite) in Chinese tea over a period of seven years. A total of 726 tea samples were tested, and nearly 87% of the samples were found to have detectable NEO residues. The overall average detection frequency of acetamiprid was the highest, reaching 73%. Imidacloprid residues in 4.6% of the samples exceeded the Chinese maximum residue limits, whereas clothianidin and nitenpyram had been detected in Chinese tea samples since 2014. The applications of thiacloprid and thiamethoxam gradually increased, and some tea samples with high residue levels appeared in China. These findings signal the replacement of new and old varieties of NEOs in China. Both long- and short-term cumulative exposures to NEOs were calculated based on optimistic and pessimistic models recommended in the EFSA guidelines. In the three survey periods, the average total imidacloprid-equivalent concentrations were 484.63, 1713.36, and 1148.34 μg/kg, respectively. Combined with the refined point estimates and probabilistic models used in this study, the hazard quotients of NEO residues in tea for Chinese tea consumers were found to be low and within the bounds of safety.
更新日期:2020-06-29

 

全部期刊列表>>
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
鲁照永
复旦大学
苏州大学
南京工业大学
南开大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
广东实验室
南京大学
陈永胜
南科大
刘尊峰
湖南大学
清华大学
王小野
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug