当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical investigation on the flow structures of the multi-strut mixing enhancement ejector
Applied Thermal Engineering ( IF 6.1 ) Pub Date : 2020-06-29 , DOI: 10.1016/j.applthermaleng.2020.115653
Wei Ye , Jiaqi Zhang , Wanwu Xu , Zhenkang Zhang

A new type of multiple jets ejector called the multi-strut mixing-enhancement ejector (MSE) has been developed in previous studies. The excellent suction and supercharging abilities of this ejector have been demonstrated through a series of cold flow tests. However, the current knowledge on MSE is limited. Numerical investigations on MSE have not been conducted in previous studies. Therefore, the present study aims to conduct a series of numerical investigation on the MSE to analyse the transform regularities of the flow structures at various secondary flow conditions and explore the evolution processes of multiple 2D jet interactions in a confined space. Results show that the flow structures of the MSE are extremely complicated and different from the traditional single jet supersonic ejector. When the secondary flow is zero, the collisions of multiple supersonic primary flows generate multiple abreast oblique shocks, and the intersections and reflections of these oblique shock waves form a shock diamond matrix in the mixer and convergent section. In addition, a novel head-shape pseudo shock is observed in the secondary throat due to the coupling interactions of multiple oblique and adverse pressure gradients, which contain three parallel X-type shocks and an extremely intricate ‘butterfly-type’ shock behind. Under various secondary flow mass rate conditions, the secondary flows limit the expansions of the primary flows in the supersonic diffuser, thereby decreasing the number and intensity of oblique shocks in the mixer and convergent section, followed by the changes in the head shape of the pseudo shock in the secondary throat. Besides, the evolution processes of multiple 2D jets interactions demonstrate a complicated 3D effect. The wave loss, friction loss and mixing loss are the main factors that affect the evolution processes of multiple jets in the mixer and convergent section. The waves cause the jets to expand and compress along the flow direction, the friction loss results in vertical separation at the interface between the primary jets and the walls, and the mixing of flows causes the horizontal recess of the primary jets. These factors also have different effects on the jet’s evolution under various secondary flow conditions. The shock and friction losses are the main factors that affect the jet’s evolution when ER is small (ER ≤ 0.037). However, with the increase in ER, the effect of both losses weakens, and mixing loss becomes the dominant factor.



中文翻译:

多支柱混合增强喷射器流动结构的数值研究

在先前的研究中,已经开发了一种新型的多喷嘴混合喷射器,称为多支杆混合增强喷射器(MSE)。通过一系列冷流测试证明了该喷射器的出色的吸力和增压能力。但是,当前有关MSE的知识是有限的。在先前的研究中尚未对MSE进行数值研究。因此,本研究旨在对MSE进行一系列数值研究,以分析各种次级流动条件下流动结构的转换规律,并探索在有限空间中多个二维射流相互作用的演化过程。结果表明,MSE的流动结构极为复杂,与传统的单喷超音速喷射器不同。当次要流量为零时 多个超音速一次流的碰撞产生了多个平行的斜向冲击波,这些斜向冲击波的交会和反射在混合器和会聚部分形成了一个菱形菱形矩阵。此外,由于多个倾斜和不利压力梯度的耦合相互作用,在次级喉咙中观察到了一种新颖的头部形状的假性电击,其中包括三个平行的X型电击和后面极其复杂的“蝴蝶型”电击。在各种次级流量质量比条件下,次级流量会限制超声速扩散器中的初级流量的膨胀,从而减少混合器和会聚段中斜向冲击的次数和强度,进而改变准直管头部的形状继发于喉咙。除了,多个2D喷射相互作用的演化过程证明了复杂的3D效果。波浪损失,摩擦损失和混合损失是影响混合器和会聚段中多股射流演变过程的主要因素。波浪使射流沿流动方向膨胀和压缩,摩擦损失导致主射流和壁之间的界面处垂直分离,流的混合导致主射流的水平凹进。这些因素在各种次级流动条件下对射流的演变也有不同的影响。冲击和摩擦损失是影响射流演变的主要因素。摩擦损失和混合损失是影响混合器和会聚段中多股射流演变过程的主要因素。波浪使射流沿流动方向膨胀和压缩,摩擦损失导致主射流与壁之间的界面处垂直分离,流的混合导致主射流的水平凹进。这些因素在各种次级流动条件下对射流的演变也有不同的影响。冲击和摩擦损失是影响射流演变的主要因素。摩擦损失和混合损失是影响混合器和会聚段中多股射流演变过程的主要因素。波浪使射流沿流动方向膨胀和压缩,摩擦损失导致主射流和壁之间的界面处垂直分离,流的混合导致主射流的水平凹进。这些因素在各种次级流动条件下对射流的演变也有不同的影响。冲击和摩擦损失是影响射流演变的主要因素。气流的混合导致主喷流的水平凹进。这些因素在各种次级流动条件下对射流的演变也有不同的影响。冲击和摩擦损失是影响射流演变的主要因素。气流的混合导致主喷流的水平凹进。这些因素在各种次级流动条件下对射流的演变也有不同的影响。冲击和摩擦损失是影响射流演变的主要因素。ER小(ER  ≤0.037)。但是,随着ER的增加,两种损失的影响减弱,并且混合损失成为主要因素。

更新日期:2020-07-21
down
wechat
bug