当前位置: X-MOL 学术Appl. Water Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation and evaluation of spacer-filled direct contact membrane distillation module
Applied Water Science ( IF 5.7 ) Pub Date : 2020-06-29 , DOI: 10.1007/s13201-020-01261-9
Khadije El Kadi , Isam Janajreh , Raed Hashaikeh

Membrane fouling and temperature polarization are the most common issues that cause limitations to membrane distillation (MD) process. Integration of spacers has been proven to resolve those problems by inducing regions of turbulence and giving the required mechanical support to the membrane. In this work, a robust high-fidelity computational fluid dynamics simulation is carried out to assess and quantify the performance of spacer-filled DCMD module and compare it with a baseline spacer-free DCMD module. Mainly, simulations are done to delineate the problem of concentration polarization and by alternating spacers material with different thermal conductivities and different displacement configurations. The performance of these different models is demonstrated in terms of concentration boundary layer development, temperature distributions, temperature polarization coefficient (TPC), mass flux, heat flux, heat transfer coefficient, and thermal efficiency. Results show that concentration polarization can penalize mass flux by nearly 10%, and conductive spacers have favorable effect on the DCMD performance compared to spacer-free in terms of TPC by 50%, mass flux by 35%, heat flux by 31%, thermal efficiency by 1%, and top and bottom membrane surface heat transfer coefficients of, respectively, 19% and 62%. Meanwhile, the stride of the spacers in the range of 1.5–3.5 mm tends to achieve a measurable mass flux. Generally, spacers integration has confirmed the capability of reducing concentration polarization at the membrane surface. These attained improvements will accelerate industrial deployments of MD.

中文翻译:

填充垫片的直接接触膜蒸馏模块的数值模拟与评估

膜结垢和温度极化是导致膜蒸馏(MD)过程受到限制的最常见问题。隔离件的集成已被证明可以通过引起湍流区域并为膜提供所需的机械支撑来解决这些问题。在这项工作中,进行了鲁棒的高保真计算流体动力学仿真,以评估和量化填充垫片的DCMD模块的性能,并将其与基线无垫片的DCMD模块进行比较。主要是进行模拟来描述浓差极化问题,并通过交替使用具有不同热导率和不同位移配置的垫片材料来进行模拟。这些不同模型的性能通过浓度边界层发展,温度分布,温度极化系数(TPC),质量通量,热通量,传热系数和热效率。结果表明,浓度极化可以使质量通量损失近10%,并且与无间隔物相比,导电间隔物对DCMD性能具有良好的影响,其中TPC为50%,质量通量为35%,热通量为31%,热效率提高了1%,顶部和底部膜表面的传热系数分别为19%和62%。同时,垫片的跨度在1.5-3.5 mm范围内趋于达到可测量的质量通量。通常,隔离物的整合已证实降低膜表面浓度极化的能力。这些取得的进步将加速MD的工业部署。和热效率。结果表明,浓度极化可以使质量通量损失近10%,并且与无间隔物相比,导电间隔物对DCMD性能具有良好的影响,其中TPC为50%,质量通量为35%,热通量为31%,热效率提高了1%,顶部和底部膜表面的传热系数分别为19%和62%。同时,垫片的跨度在1.5-3.5 mm范围内趋于达到可测量的质量通量。通常,隔离物的整合已证实降低膜表面浓度极化的能力。这些取得的进步将加速MD的工业部署。和热效率。结果表明,浓度极化可以使质量通量损失近10%,并且与无间隔物相比,导电间隔物对DCMD性能具有良好的影响,其中TPC为50%,质量通量为35%,热通量为31%,热效率提高了1%,顶部和底部膜表面的传热系数分别为19%和62%。同时,垫片的跨度在1.5-3.5 mm范围内趋于达到可测量的质量通量。通常,隔离物的整合已证实降低膜表面浓度极化的能力。这些取得的进步将加速MD的工业部署。相较于无垫片,TPC降低了50%,质量通量降低了35%,热通量降低了31%,热效率降低了1%,顶部和底部膜表面的传热系数也大大提高了。分别为19%和62%。同时,垫片的跨度在1.5-3.5 mm范围内趋于达到可测量的质量通量。通常,隔离物的整合已证实降低膜表面浓度极化的能力。这些取得的进步将加速MD的工业部署。相较于无垫片,TPC降低了50%,质量通量降低了35%,热通量降低了31%,热效率降低了1%,顶部和底部膜表面的传热系数也大大提高了。分别为19%和62%。同时,垫片的跨度在1.5-3.5 mm的范围内趋于实现可测量的质量通量。通常,隔离物的整合已证实降低膜表面浓度极化的能力。这些取得的进步将加速MD的工业部署。5 mm易于获得可测量的质量通量。通常,隔离物的整合已证实降低膜表面浓度极化的能力。这些取得的进步将加速MD的工业部署。5 mm易于获得可测量的质量通量。通常,隔离物的整合已证实降低膜表面浓度极化的能力。这些取得的进步将加速MD的工业部署。
更新日期:2020-06-29
down
wechat
bug