当前位置: X-MOL 学术Appl. Nanosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved electrocatalytic performance with enlarged surface area and reduced bandgap of caterpillar and cabbage-like nickel sulphide nanostructures
Applied Nanoscience Pub Date : 2020-06-29 , DOI: 10.1007/s13204-020-01488-7
Rekha Bhardwaj , Ranjana Jha , Medha Bhushan

In the present work, two different phases of nickel sulphide (β-NiS and NiS2) were successfully synthesized via facile hydrothermal route. The physical and chemical characterizations such as X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirms formation of β-NiS and NiS2. Mesoporous caterpillar and cabbage-like nanostructures were observed in FESEM image with enlarged specific area 247.22 m2/g and 251.47 m2/g, respectively. Due to large surface area of the synthesized β-NiS and NiS2 nanoparticles, bandgap was found to be reduced as 0.98 eV and 0.74 eV, respectively, than the bulk NiS. Charge transfer characteristics were examined by electrochemical impedance spectroscopy (EIS) technique; caterpillar-like nanostructures (β-NiS) has lowest charge transfer resistance 2.91 Ω, due to its unique structure. Cyclic Voltammetry (CV) analysis reveals that the synthesized β-NiS and NiS2 nanoparticles show that the charge storage mechanism is non-Faradaic. Cabbage-like β-NiS nanoparticles show maximum areal capacitance 14.24 F cm−2 in 1 M LiOH electrolyte and show 89% cyclic stability over 1000 cycles. The electrocatalytic performance, such as high areal capacitance and lower charge transfer resistance indicate that the synthesized β-NiS and NiS2 nanoparticles facilitate fast ion diffusion during redox processes.



中文翻译:

改进的电催化性能,增加了表面积并降低了毛毛虫和卷心菜状硫化镍纳米结构的带隙

在目前的工作中,通过简便的水热法成功地合成了两个不同的硫化镍相(β-NiS和NiS 2)。诸如X射线光电子能谱(XPS),X射线衍射(XRD)和傅里叶变换红外(FTIR)光谱等物理和化学特征证实了β-NiS和NiS 2的形成。在FESEM图像中观察到介孔的毛毛虫状和卷心菜状的纳米结构,其比表面积分别增加了247.22 m 2 / g和251.47 m 2 / g。由于合成的β-NiS和NiS 2的表面积大在纳米粒子中,带隙被发现比整体NiS分别降低了0.98 eV和0.74 eV。通过电化学阻抗谱(EIS)技术检查电荷转移特性;毛毛虫状纳米结构(β-NiS)由于其独特的结构而具有最低的电荷转移电阻2.91Ω。循环伏安法(CV)分析表明,合成的β-NiS和NiS 2纳米粒子表明电荷存储机制是非法拉第的。卷心菜状的β-NiS纳米颗粒在1 M LiOH电解质中显示的最大面电容为14.24 F cm -2,在1000次循环中显示89%的循环稳定性。高面积电容和较低的电荷转移电阻等电催化性能表明合成的β-NiS和NiS 2 纳米粒子有助于氧化还原过程中离子的快速扩散。

更新日期:2020-06-29
down
wechat
bug