当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics.
Light: Science & Applications ( IF 20.6 ) Pub Date : 2020-06-28 , DOI: 10.1038/s41377-020-00345-0
Guillaume Baffou 1 , Ivan Bordacchini 2 , Andrea Baldi 3, 4 , Romain Quidant 2, 5, 6
Affiliation  

Light absorption and scattering of plasmonic metal nanoparticles can lead to non-equilibrium charge carriers, intense electromagnetic near-fields, and heat generation, with promising applications in a vast range of fields, from chemical and physical sensing to nanomedicine and photocatalysis for the sustainable production of fuels and chemicals. Disentangling the relative contribution of thermal and non-thermal contributions in plasmon-driven processes is, however, difficult. Nanoscale temperature measurements are technically challenging, and macroscale experiments are often characterized by collective heating effects, which tend to make the actual temperature increase unpredictable. This work is intended to help the reader experimentally detect and quantify photothermal effects in plasmon-driven chemical reactions, to discriminate their contribution from that due to photochemical processes and to cast a critical eye on the current literature. To this aim, we review, and in some cases propose, seven simple experimental procedures that do not require the use of complex or expensive thermal microscopy techniques. These proposed procedures are adaptable to a wide range of experiments and fields of research where photothermal effects need to be assessed, such as plasmonic-assisted chemistry, heterogeneous catalysis, photovoltaics, biosensing, and enhanced molecular spectroscopy.



中文翻译:

在等离子体激元中区分光热和热载流子过程的简单实验程序。

等离子体金属纳米粒子的光吸收和散射可导致非平衡电荷载流子、强电磁近场和发热,在从化学和物理传感到纳米医学和光催化可持续生产的广泛领域具有广阔的应用前景燃料和化学品。然而,在等离子体驱动过程中解开热和非热贡献的相对贡献是困难的。纳米级温度测量在技术上具有挑战性,宏观实验通常具有集体加热效应,这往往会使实际温度升高不可预测。这项工作旨在帮助读者通过实验检测和量化等离子体驱动的化学反应中的光热效应,将他们的贡献与光化学过程的贡献区分开来,并对当前的文献进行批判。为此,我们回顾并在某些情况下提出了七个不需要使用复杂或昂贵的热显微技术的简单实验程序。这些提议的程序适用于需要评估光热效应的广泛实验和研究领域,例如等离子体辅助化学、多相催化、光伏、生物传感和增强型分子光谱。

更新日期:2020-06-28
down
wechat
bug