当前位置: X-MOL 学术Pattern Recogn. Lett. › 论文详情
Multi-lingual Scene Text Detection and Language Identification
Pattern Recognition Letters ( IF 3.255 ) Pub Date : 2020-06-27 , DOI: 10.1016/j.patrec.2020.06.024
Shaswata Saha; Neelotpal Chakraborty; Soumyadeep Kundu; Sayantan Paul; Ayatullah Faruk Mollah; Subhadip Basu; Ram Sarkar

Scene text analysis is a field of research that poses challenges to researchers owing to the background complexities, image quality, text orientation, text size, etc. The problem gets more complex when the image contains multi-lingual texts. Most scene text detection techniques approach the problem as either a feature-based or deep learning-based problem. In this work, an end-to-end system is proposed for scene text detection, localization and language identification to combine feature-based and deep learning-based approaches. The model uses Maximally Stable Extremal Regions and Stroke Width Transform for generating text proposals, followed by proposal refinement using Generative Adversarial Network. Finally, a Convolution Neural Network based model is used for language identification of the detected scene texts. Experiments have been conducted on standard datasets like KAIST, COCO, CTW1500, CVSI and ICDAR along with an in-house multi-lingual Indic scene text dataset for which the proposed model achieves satisfactory results.
更新日期:2020-06-28

 

全部期刊列表>>
胸部和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
鲁照永
华东师范大学
苏州大学
南京工业大学
南开大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
广东实验室
南京大学
王杰
南科大
刘尊峰
湖南大学
清华大学
王小野
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug