当前位置: X-MOL 学术Mater. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate perovskite coating on ferritic stainless steel interconnect for low temperature solid oxide fuel cells
Materials Chemistry and Physics ( IF 4.3 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.matchemphys.2020.123433
K.H. Tan , H.A. Rahman , H. Taib

Abstract Ferritic stainless steel interconnect at a high temperature and a prolonged operating time is exposed to severe conditions, such as the overgrowth of chromium oxide layer on an interconnect and cathode chromium poisoning due to chromium oxide migration. In this study, a protective Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate (BSCF-SDCC) perovskite coating was developed on SUS 430 stainless steel through electrophoretic deposition and subsequently sintering to overcome these problems. BSCF-SDCC coating layer was sintered from 550 °C to 750 °C and examined in terms of its crystalline phase, carbonate bonding and microstructure. Area specific resistance (ASR) was tested at each sintering temperature of BSCF-SDCC coating by using a two-probe DC technique during oxidation at 600 °C. Afterwards, the microstructure was analyzed to ensure the endurance of coating characteristics and determine chromium diffusion during oxidation. Carbonate bonding in BSCF-SDCC decreased when sintering temperature increased. The microstructure of the BSCF-SDCC coating sintered at 550°C-650 °C was uniform and dense, but a crack was observed in the coating sintered at 700 °C and 750 °C. The crystalline phase of BSCF-SDCC was verified except the coating sintered at 750 °C, indicating the secondary phase formation of BaCO3. After 500 h of oxidation, the BSCF-SDCC coating sintered at 550°C-650 °C was achieved below the required 0.1 Ωcm2, whereas the coating sintered at 600 °C exhibited the lowest ASR of 0.073 Ωcm2. The coating microstructure remained dense, compact and uniform after thermal oxidation. Therefore, a protective BSCF-SDCC coating for interconnects was successfully developed at low temperatures (400°C-600 °C).

中文翻译:

Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Sm0.2Ce0.8O1.9碳酸盐钙钛矿涂层铁素体不锈钢互连低温固体氧化物燃料电池

摘要 铁素体不锈钢互连在高温和长时间运行下暴露在恶劣的条件下,例如互连上的氧化铬层过度生长和由于氧化铬迁移导致的阴极铬中毒。在这项研究中,通过电泳沉积和随后的烧结在 SUS 430 不锈钢上开发了保护性 Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Sm0.2Ce0.8O1.9 碳酸盐(BSCF-SDCC)钙钛矿涂层以克服这些问题. BSCF-SDCC 涂层在 550°C 至 750°C 的温度下烧结,并检查其结晶相、碳酸盐键合和微观结构。在 BSCF-SDCC 涂层的每个烧结温度下,通过在 600°C 氧化期间使用双探针 DC 技术测试面积电阻率 (ASR)。然后,分析微观结构以确保涂层特性的持久性并确定氧化过程中的铬扩散。当烧结温度升高时,BSCF-SDCC 中的碳酸盐键合减少。550°C-650°C烧结的BSCF-SDCC涂层的微观结构均匀致密,但在700°C和750°C烧结的涂层中观察到裂纹。除了涂层在 750°C 下烧结外,BSCF-SDCC 的结晶相得到验证,表明形成了 BaCO3 的第二相。氧化 500 小时后,在 550°C-650°C 下烧结的 BSCF-SDCC 涂层低于所需的 0.1 Ωcm2,而在 600°C 下烧结的涂层表现出最低的 ASR,为 0.073 Ωcm2。热氧化后涂层微观结构保持致密、致密和均匀。所以,
更新日期:2020-11-01
down
wechat
bug