当前位置: X-MOL 学术Int. J. Greenh. Gas. Con. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Geological carbon sequestration: Modeling mafic rock carbonation using point-source flue gases
International Journal of Greenhouse Gas Control ( IF 4.6 ) Pub Date : 2020-06-27 , DOI: 10.1016/j.ijggc.2020.103106
Daniel M. Sturmer , Regina N. Tempel , Mohamad Reza Soltanian

Basaltic rocks are being considered as a key host for carbon dioxide (CO2) storage. This is a function of their global distribution and relative reactivity, resulting in CO2 mineralization. However, the reactivity of mafic minerals allows for reaction and sequestration of other gases associated with point source emissions. Though many mechanisms exist to separate CO2 from flue gas, these can be costly system additions for existing point source emitters. In this study, we model the effect of adding minor amounts of SO2 to CO2 during ex-situ mineral carbonation of basalt samples from Nevada, USA. We compare reaction path geochemical models at temperatures between 0° and 200 °C and at three different SO2 concentrations. Results from these models are compared to published data evaluating the interaction of these samples with CO2 only. The models have carbon trapped in four minerals (magnesite, siderite, dolomite, and dawsonite). Sulfur is sequestered as one sulfide (pyrite) and up to four sulfates (alunite, anhydrite, gypsum, and thenardite). With added SO2, between 43–161 grams of carbon are trapped per kg rock reacted. These models show -25 % to +18 % change in carbon sequestration, though decreases are more prevalent with increasing SO2. One major issue with adding SO2 as a reactant is pyrite precipitation, which may result in acid rock drainage from the reaction product. However, adding NO2 as a reactant inhibits pyrite formation by increasing oxygen fugacity. Ultimately, these methods can be used as an initial, inexpensive screening tool when evaluating between potential mafic rock carbonation projects.



中文翻译:

地质碳固存:使用点源烟道气模拟镁铁质岩石碳化

玄武岩被认为是二氧化碳(CO 2)储存的主要宿主。这取决于它们的整体分布和相对反应性,从而导致CO 2矿化。然而,镁铁矿物质的反应性允许与点源排放物相关的其他气体发生反应和隔离。尽管存在许多将CO 2与烟气分离的机制,但对于现有的点源发射器而言,这些可能是昂贵的系统添加。在这项研究中,我们的模型添加SO少量的效果2到CO 2从美国内华达州玄武岩样品易地矿物碳酸化过程中。我们比较了温度介于0°和200°C之间以及三种不同SO下的反应路径地球化学模型2浓度。将这些模型的结果与发布的数据进行比较,这些数据仅评估了这些样品与CO 2的相互作用。这些模型将碳捕获在四种矿物(菱镁矿,菱铁矿,白云石和片钠铝石)中。硫被螯合为一种硫化物(黄铁矿)和最多四种硫酸盐(褐铁矿,硬石膏,石膏和芒硝)。添加了SO 2,43-161克的碳之间被捕获每公斤岩石反应。这些模型显示固碳变化在-25%到+ 18%之间,尽管随着SO 2的增加其减少更为普遍。加入SO 2作为反应物的一个主要问题是黄铁矿沉淀,这可能导致酸性岩石从反应产物中排出。但是,添加NO 2作为反应物通过增加氧逸度来抑制黄铁矿的形成。最终,当在潜在的镁铁质岩石碳化项目之间进行评估时,这些方法可以用作廉价的初始筛选工具。

更新日期:2020-06-28
down
wechat
bug